Cargando…
DenovoProfiling: A webserver for de novo generated molecule library profiling
Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379519/ https://www.ncbi.nlm.nih.gov/pubmed/36016718 http://dx.doi.org/10.1016/j.csbj.2022.07.045 |
_version_ | 1784768692121239552 |
---|---|
author | Liu, Zhihong Du, Jiewen Lin, Ziying Li, Ze Liu, Bingdong Cui, Zongbin Fang, Jiansong Xie, Liwei |
author_facet | Liu, Zhihong Du, Jiewen Lin, Ziying Li, Ze Liu, Bingdong Cui, Zongbin Fang, Jiansong Xie, Liwei |
author_sort | Liu, Zhihong |
collection | PubMed |
description | Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An increasing number of publicly available chemogenomic databases sets good foundations and creates good opportunities for comprehensive profiling of the de novo library. In this paper, we present DenovoProfiling, a webserver dedicated to de novo library visualization and functional profiling. Currently, DenovoProfiling contains six modules: (1) identification & visualization module for chemical structure visualization and identify the reported structures, (2) chemical space module for chemical space exploration using similarity maps, principal components analysis (PCA), drug-like properties distribution, and scaffold-based clustering, (3) ADMET prediction module for predicting the ADMET properties of the de novo molecules, (4) molecular alignment module for three dimensional molecular shape analysis, (5) drugs mapping module for identifying structural similar drugs, and (6) target & pathway module for identifying the reported targets and corresponding functional pathways. DenovoProfiling could provide structural identification, chemical space exploration, drug mapping, and target & pathway information. The comprehensive annotated information could give users a clear picture of their de novo library and could guide the further selection of candidates for chemical synthesis and biological confirmation. DenovoProfiling is freely available at http://denovoprofiling.xielab.net. |
format | Online Article Text |
id | pubmed-9379519 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-93795192022-08-24 DenovoProfiling: A webserver for de novo generated molecule library profiling Liu, Zhihong Du, Jiewen Lin, Ziying Li, Ze Liu, Bingdong Cui, Zongbin Fang, Jiansong Xie, Liwei Comput Struct Biotechnol J Research Article Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An increasing number of publicly available chemogenomic databases sets good foundations and creates good opportunities for comprehensive profiling of the de novo library. In this paper, we present DenovoProfiling, a webserver dedicated to de novo library visualization and functional profiling. Currently, DenovoProfiling contains six modules: (1) identification & visualization module for chemical structure visualization and identify the reported structures, (2) chemical space module for chemical space exploration using similarity maps, principal components analysis (PCA), drug-like properties distribution, and scaffold-based clustering, (3) ADMET prediction module for predicting the ADMET properties of the de novo molecules, (4) molecular alignment module for three dimensional molecular shape analysis, (5) drugs mapping module for identifying structural similar drugs, and (6) target & pathway module for identifying the reported targets and corresponding functional pathways. DenovoProfiling could provide structural identification, chemical space exploration, drug mapping, and target & pathway information. The comprehensive annotated information could give users a clear picture of their de novo library and could guide the further selection of candidates for chemical synthesis and biological confirmation. DenovoProfiling is freely available at http://denovoprofiling.xielab.net. Research Network of Computational and Structural Biotechnology 2022-08-02 /pmc/articles/PMC9379519/ /pubmed/36016718 http://dx.doi.org/10.1016/j.csbj.2022.07.045 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Liu, Zhihong Du, Jiewen Lin, Ziying Li, Ze Liu, Bingdong Cui, Zongbin Fang, Jiansong Xie, Liwei DenovoProfiling: A webserver for de novo generated molecule library profiling |
title | DenovoProfiling: A webserver for de novo generated molecule library profiling |
title_full | DenovoProfiling: A webserver for de novo generated molecule library profiling |
title_fullStr | DenovoProfiling: A webserver for de novo generated molecule library profiling |
title_full_unstemmed | DenovoProfiling: A webserver for de novo generated molecule library profiling |
title_short | DenovoProfiling: A webserver for de novo generated molecule library profiling |
title_sort | denovoprofiling: a webserver for de novo generated molecule library profiling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379519/ https://www.ncbi.nlm.nih.gov/pubmed/36016718 http://dx.doi.org/10.1016/j.csbj.2022.07.045 |
work_keys_str_mv | AT liuzhihong denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling AT dujiewen denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling AT linziying denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling AT lize denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling AT liubingdong denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling AT cuizongbin denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling AT fangjiansong denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling AT xieliwei denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling |