DenovoProfiling: A webserver for de novo generated molecule library profiling

Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An i...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhihong, Du, Jiewen, Lin, Ziying, Li, Ze, Liu, Bingdong, Cui, Zongbin, Fang, Jiansong, Xie, Liwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379519/
https://www.ncbi.nlm.nih.gov/pubmed/36016718
http://dx.doi.org/10.1016/j.csbj.2022.07.045
_version_ 1784768692121239552
author Liu, Zhihong
Du, Jiewen
Lin, Ziying
Li, Ze
Liu, Bingdong
Cui, Zongbin
Fang, Jiansong
Xie, Liwei
author_facet Liu, Zhihong
Du, Jiewen
Lin, Ziying
Li, Ze
Liu, Bingdong
Cui, Zongbin
Fang, Jiansong
Xie, Liwei
author_sort Liu, Zhihong
collection PubMed
description Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An increasing number of publicly available chemogenomic databases sets good foundations and creates good opportunities for comprehensive profiling of the de novo library. In this paper, we present DenovoProfiling, a webserver dedicated to de novo library visualization and functional profiling. Currently, DenovoProfiling contains six modules: (1) identification & visualization module for chemical structure visualization and identify the reported structures, (2) chemical space module for chemical space exploration using similarity maps, principal components analysis (PCA), drug-like properties distribution, and scaffold-based clustering, (3) ADMET prediction module for predicting the ADMET properties of the de novo molecules, (4) molecular alignment module for three dimensional molecular shape analysis, (5) drugs mapping module for identifying structural similar drugs, and (6) target & pathway module for identifying the reported targets and corresponding functional pathways. DenovoProfiling could provide structural identification, chemical space exploration, drug mapping, and target & pathway information. The comprehensive annotated information could give users a clear picture of their de novo library and could guide the further selection of candidates for chemical synthesis and biological confirmation. DenovoProfiling is freely available at http://denovoprofiling.xielab.net.
format Online
Article
Text
id pubmed-9379519
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-93795192022-08-24 DenovoProfiling: A webserver for de novo generated molecule library profiling Liu, Zhihong Du, Jiewen Lin, Ziying Li, Ze Liu, Bingdong Cui, Zongbin Fang, Jiansong Xie, Liwei Comput Struct Biotechnol J Research Article Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An increasing number of publicly available chemogenomic databases sets good foundations and creates good opportunities for comprehensive profiling of the de novo library. In this paper, we present DenovoProfiling, a webserver dedicated to de novo library visualization and functional profiling. Currently, DenovoProfiling contains six modules: (1) identification & visualization module for chemical structure visualization and identify the reported structures, (2) chemical space module for chemical space exploration using similarity maps, principal components analysis (PCA), drug-like properties distribution, and scaffold-based clustering, (3) ADMET prediction module for predicting the ADMET properties of the de novo molecules, (4) molecular alignment module for three dimensional molecular shape analysis, (5) drugs mapping module for identifying structural similar drugs, and (6) target & pathway module for identifying the reported targets and corresponding functional pathways. DenovoProfiling could provide structural identification, chemical space exploration, drug mapping, and target & pathway information. The comprehensive annotated information could give users a clear picture of their de novo library and could guide the further selection of candidates for chemical synthesis and biological confirmation. DenovoProfiling is freely available at http://denovoprofiling.xielab.net. Research Network of Computational and Structural Biotechnology 2022-08-02 /pmc/articles/PMC9379519/ /pubmed/36016718 http://dx.doi.org/10.1016/j.csbj.2022.07.045 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Liu, Zhihong
Du, Jiewen
Lin, Ziying
Li, Ze
Liu, Bingdong
Cui, Zongbin
Fang, Jiansong
Xie, Liwei
DenovoProfiling: A webserver for de novo generated molecule library profiling
title DenovoProfiling: A webserver for de novo generated molecule library profiling
title_full DenovoProfiling: A webserver for de novo generated molecule library profiling
title_fullStr DenovoProfiling: A webserver for de novo generated molecule library profiling
title_full_unstemmed DenovoProfiling: A webserver for de novo generated molecule library profiling
title_short DenovoProfiling: A webserver for de novo generated molecule library profiling
title_sort denovoprofiling: a webserver for de novo generated molecule library profiling
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379519/
https://www.ncbi.nlm.nih.gov/pubmed/36016718
http://dx.doi.org/10.1016/j.csbj.2022.07.045
work_keys_str_mv AT liuzhihong denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling
AT dujiewen denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling
AT linziying denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling
AT lize denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling
AT liubingdong denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling
AT cuizongbin denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling
AT fangjiansong denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling
AT xieliwei denovoprofilingawebserverfordenovogeneratedmoleculelibraryprofiling