Cargando…
Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes
RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have u...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379569/ https://www.ncbi.nlm.nih.gov/pubmed/35982794 http://dx.doi.org/10.1016/j.isci.2022.104811 |
_version_ | 1784768701393797120 |
---|---|
author | Cabral, Sarah E. Otis, Jessica P. Mowry, Kimberly L. |
author_facet | Cabral, Sarah E. Otis, Jessica P. Mowry, Kimberly L. |
author_sort | Cabral, Sarah E. |
collection | PubMed |
description | RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have used an L-body RNA-binding protein, PTBP3, to test the role of RNA–protein interactions in regulating the biophysical characteristics of L-bodies in vivo and PTBP3–RNA condensates in vitro. Our results reveal that RNA–protein interactions drive recruitment of PTBP3 and localized RNA to L-bodies and that multivalent interactions tune the dynamics of the PTBP3 after localization. In a concentration-dependent manner, RNA becomes non-dynamic and interactions with the RNA determine PTBP3 dynamics within these biomolecular condensates in vivo and in vitro. Importantly, RNA, and not protein, is required for maintenance of the PTBP3–RNA condensates in vitro, pointing to a model where RNA serves as a non-dynamic substructure in these condensates. |
format | Online Article Text |
id | pubmed-9379569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-93795692022-08-17 Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes Cabral, Sarah E. Otis, Jessica P. Mowry, Kimberly L. iScience Article RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have used an L-body RNA-binding protein, PTBP3, to test the role of RNA–protein interactions in regulating the biophysical characteristics of L-bodies in vivo and PTBP3–RNA condensates in vitro. Our results reveal that RNA–protein interactions drive recruitment of PTBP3 and localized RNA to L-bodies and that multivalent interactions tune the dynamics of the PTBP3 after localization. In a concentration-dependent manner, RNA becomes non-dynamic and interactions with the RNA determine PTBP3 dynamics within these biomolecular condensates in vivo and in vitro. Importantly, RNA, and not protein, is required for maintenance of the PTBP3–RNA condensates in vitro, pointing to a model where RNA serves as a non-dynamic substructure in these condensates. Elsevier 2022-07-21 /pmc/articles/PMC9379569/ /pubmed/35982794 http://dx.doi.org/10.1016/j.isci.2022.104811 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Cabral, Sarah E. Otis, Jessica P. Mowry, Kimberly L. Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes |
title | Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes |
title_full | Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes |
title_fullStr | Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes |
title_full_unstemmed | Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes |
title_short | Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes |
title_sort | multivalent interactions with rna drive recruitment and dynamics in biomolecular condensates in xenopus oocytes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379569/ https://www.ncbi.nlm.nih.gov/pubmed/35982794 http://dx.doi.org/10.1016/j.isci.2022.104811 |
work_keys_str_mv | AT cabralsarahe multivalentinteractionswithrnadriverecruitmentanddynamicsinbiomolecularcondensatesinxenopusoocytes AT otisjessicap multivalentinteractionswithrnadriverecruitmentanddynamicsinbiomolecularcondensatesinxenopusoocytes AT mowrykimberlyl multivalentinteractionswithrnadriverecruitmentanddynamicsinbiomolecularcondensatesinxenopusoocytes |