Cargando…
Molecular and structural basis of actin filament severing by ADF/cofilin
ADF/cofilin’s cooperative binding to actin filament modifies the conformation and alignment of G-actin subunits locally, causing the filament to sever at “boundaries” formed among bare and ADF/cofilin-occupied regions. Analysis of the impact of the ADF/cofilin cluster boundary on the deformation beh...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379983/ https://www.ncbi.nlm.nih.gov/pubmed/36016710 http://dx.doi.org/10.1016/j.csbj.2022.07.054 |
_version_ | 1784768785357471744 |
---|---|
author | Jaswandkar, Sharad V. Katti, Kalpana S. Katti, Dinesh R. |
author_facet | Jaswandkar, Sharad V. Katti, Kalpana S. Katti, Dinesh R. |
author_sort | Jaswandkar, Sharad V. |
collection | PubMed |
description | ADF/cofilin’s cooperative binding to actin filament modifies the conformation and alignment of G-actin subunits locally, causing the filament to sever at “boundaries” formed among bare and ADF/cofilin-occupied regions. Analysis of the impact of the ADF/cofilin cluster boundary on the deformation behavior of actin filaments in a mechanically strained environment is critical for understanding the biophysics of their severing. The present investigation uses molecular dynamics simulations to generate atomic resolution models of bare, partially, and fully cofilin decorated actin filaments. Steered molecular dynamics simulations are utilized to determine the mechanical properties of three filament models when subjected to axial stretching, axial compression, and bending forces. We highlight differences in strain distribution, failure mechanisms in the three filament models, and biomechanical effects of cofilin cluster boundaries in overall filament rupture. Based on the influence of ADF/cofilin binding on intrastrand and interstrand G-actin interfaces, the cofilin-mediated actin filament severing model proposed here can help understand cofilin mediated actin dynamics. |
format | Online Article Text |
id | pubmed-9379983 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-93799832022-08-24 Molecular and structural basis of actin filament severing by ADF/cofilin Jaswandkar, Sharad V. Katti, Kalpana S. Katti, Dinesh R. Comput Struct Biotechnol J Research Article ADF/cofilin’s cooperative binding to actin filament modifies the conformation and alignment of G-actin subunits locally, causing the filament to sever at “boundaries” formed among bare and ADF/cofilin-occupied regions. Analysis of the impact of the ADF/cofilin cluster boundary on the deformation behavior of actin filaments in a mechanically strained environment is critical for understanding the biophysics of their severing. The present investigation uses molecular dynamics simulations to generate atomic resolution models of bare, partially, and fully cofilin decorated actin filaments. Steered molecular dynamics simulations are utilized to determine the mechanical properties of three filament models when subjected to axial stretching, axial compression, and bending forces. We highlight differences in strain distribution, failure mechanisms in the three filament models, and biomechanical effects of cofilin cluster boundaries in overall filament rupture. Based on the influence of ADF/cofilin binding on intrastrand and interstrand G-actin interfaces, the cofilin-mediated actin filament severing model proposed here can help understand cofilin mediated actin dynamics. Research Network of Computational and Structural Biotechnology 2022-08-04 /pmc/articles/PMC9379983/ /pubmed/36016710 http://dx.doi.org/10.1016/j.csbj.2022.07.054 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Jaswandkar, Sharad V. Katti, Kalpana S. Katti, Dinesh R. Molecular and structural basis of actin filament severing by ADF/cofilin |
title | Molecular and structural basis of actin filament severing by ADF/cofilin |
title_full | Molecular and structural basis of actin filament severing by ADF/cofilin |
title_fullStr | Molecular and structural basis of actin filament severing by ADF/cofilin |
title_full_unstemmed | Molecular and structural basis of actin filament severing by ADF/cofilin |
title_short | Molecular and structural basis of actin filament severing by ADF/cofilin |
title_sort | molecular and structural basis of actin filament severing by adf/cofilin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379983/ https://www.ncbi.nlm.nih.gov/pubmed/36016710 http://dx.doi.org/10.1016/j.csbj.2022.07.054 |
work_keys_str_mv | AT jaswandkarsharadv molecularandstructuralbasisofactinfilamentseveringbyadfcofilin AT kattikalpanas molecularandstructuralbasisofactinfilamentseveringbyadfcofilin AT kattidineshr molecularandstructuralbasisofactinfilamentseveringbyadfcofilin |