Cargando…

Synthesis, Biological Evaluation, and In Silico Studies of Novel Coumarin-Based 4H,5H-pyrano[3,2-c]chromenes as Potent β-Glucuronidase and Carbonic Anhydrase Inhibitors

[Image: see text] The search for novel heterocyclic compounds with a natural product skeleton as potent enzyme inhibitors against clinical hits is our prime concern in this study. Here, a simple and facile two-step strategy has been designed to synthesize a series of novel coumarin-based dihydropyra...

Descripción completa

Detalles Bibliográficos
Autores principales: Arif, Nadia, Shafiq, Zahid, Mahmood, Khalid, Rafiq, Muhammad, Naz, Sadia, Shahzad, Sohail Anjum, Farooq, Umar, Bahkali, Ali H., Elgorban, Abdallah M., Yaqub, Muhammad, El-Gokha, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386806/
https://www.ncbi.nlm.nih.gov/pubmed/35990487
http://dx.doi.org/10.1021/acsomega.2c03528
Descripción
Sumario:[Image: see text] The search for novel heterocyclic compounds with a natural product skeleton as potent enzyme inhibitors against clinical hits is our prime concern in this study. Here, a simple and facile two-step strategy has been designed to synthesize a series of novel coumarin-based dihydropyranochromenes (12a–12m) in a basic moiety. The synthesized compounds were thus characterized through spectroscopic techniques and screened for inhibition potency against the cytosolic hCA II isoform and β-glucuronidase. Few of these compounds were potent inhibitors of hCA II and β-glucuronidase with varying IC(50) values ranging from 4.55 ± 0.22 to 21.77 ± 3.32 μM and 440.1 ± 1.17 to 971.3 ± 0.05 μM, respectively. Among the stream of synthesized compounds, 12e and 12i were the most potent inhibitors of β-glucuronidase, while 12h, 12i, and 12j showed greater potency against hCA II. In silico docking studies illustrated the significance of substituted groups on the pyranochromene skeleton and binding pattern of these highly potent compounds inside enzyme pockets.