Cargando…
A 3-Mbp fragment on rat chromosome 1 affects susceptibility both to stroke and kidney injury under salt loading in the stroke-prone spontaneously hypertensive rat: a genetic approach using multiple congenic strains
We have previously reported that a major quantitative trait locus (QTL) responsible for susceptibility to salt-induced stroke in the stroke-prone spontaneously hypertensive rat (SHRSP) is located in a 3-Mbp region on chromosome 1 covered by SHRSP.SHR-(D1Rat23-D1Rat213)/Izm (termed Pr1.31), a congeni...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Association for Laboratory Animal Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388333/ https://www.ncbi.nlm.nih.gov/pubmed/35354714 http://dx.doi.org/10.1538/expanim.21-0189 |
Sumario: | We have previously reported that a major quantitative trait locus (QTL) responsible for susceptibility to salt-induced stroke in the stroke-prone spontaneously hypertensive rat (SHRSP) is located in a 3-Mbp region on chromosome 1 covered by SHRSP.SHR-(D1Rat23-D1Rat213)/Izm (termed Pr1.31), a congenic strain with segments from SHRSP/Izm introduced into the stroke-resistant SHR/Izm. Here, we attempted to narrow down the candidate region on chromosome 1 further through analyses of subcongenic strains constructed for the target region. Simultaneously, salt-induced kidney injury was evaluated through the measurement of urinary albumin and the gene expression of renal tubular injury markers (Kim-1 and Clu) to explore a possible mechanism leading to the onset of stroke. All subcongenic strains examined in this study showed lower susceptibility to salt-induced stroke than SHRSP. Interestingly, Pr1.31 had the lowest stroke susceptibility when compared with newly constructed subcongenic strains harboring fragments of the congenic sequence in Pr1.31. Although Kim-1 and Clu expression after 1 week of salt loading in Pr1.31 did not differ significantly from those in SHRSP, the urinary albumin level of Pr1.31 was significantly lower than those of the other subcongenic strains and that of SHRSP. The present results indicated that, although the congenic fragment in Pr1.31 harbored the gene(s) related to salt-induced organ damages, further genetic dissection of the candidate region was difficult due to multiple QTLs suggested in this region. Further analysis using Pr1.31 will unveil genetic and pathophysiological mechanisms underlying salt-induced end organ damages in SHRSP. |
---|