Cargando…
Colistin-degrading proteases confer collective resistance to microbial communities during polymicrobial infections
BACKGROUND: The increasing prevalence of resistance against the last-resort antibiotic colistin is a significant threat to global public health. Here, we discovered a novel colistin resistance mechanism via enzymatic inactivation of the drug and proposed its clinical importance in microbial communit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389796/ https://www.ncbi.nlm.nih.gov/pubmed/35982474 http://dx.doi.org/10.1186/s40168-022-01315-x |
Sumario: | BACKGROUND: The increasing prevalence of resistance against the last-resort antibiotic colistin is a significant threat to global public health. Here, we discovered a novel colistin resistance mechanism via enzymatic inactivation of the drug and proposed its clinical importance in microbial communities during polymicrobial infections. RESULTS: A bacterial strain of the Gram-negative opportunistic pathogen Stenotrophomonas maltophilia capable of degrading colistin and exhibiting a high-level colistin resistance was isolated from the soil environment. A colistin-degrading protease (Cdp) was identified in this strain, and its contribution to colistin resistance was demonstrated by growth inhibition experiments using knock-out (Δcdp) and complemented (Δcdp::cdp) mutants. Coculture and coinfection experiments revealed that S. maltophilia carrying the cdp gene could inactivate colistin and protect otherwise susceptible Pseudomonas aeruginosa, which may seriously affect the clinical efficacy of the drug for the treatment of cystic fibrosis patients with polymicrobial infection. CONCLUSIONS: Our results suggest that Cdp should be recognized as a colistin resistance determinant that confers collective resistance at the microbial community level. Our study will provide vital information for successful clinical outcomes during the treatment of complex polymicrobial infections, particularly including S. maltophilia and other colistin-susceptible Gram-negative pathogens such as P. aeruginosa. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01315-x. |
---|