Cargando…
Radiation Cleaved Drug-Conjugate Linkers Enable Local Payload Release
[Image: see text] Conjugation of therapeutic payloads to biologics including antibodies and albumin can enhance the selectively of drug delivery to solid tumors. However, achieving activity in tumors while avoiding healthy tissues remains a challenge, and payload activity in off-target tissues can c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390333/ https://www.ncbi.nlm.nih.gov/pubmed/35833631 http://dx.doi.org/10.1021/acs.bioconjchem.2c00174 |
Sumario: | [Image: see text] Conjugation of therapeutic payloads to biologics including antibodies and albumin can enhance the selectively of drug delivery to solid tumors. However, achieving activity in tumors while avoiding healthy tissues remains a challenge, and payload activity in off-target tissues can cause toxicity for many such drug-conjugates. Here, we address this issue by presenting a drug–conjugate linker strategy that releases an active therapeutic payload upon exposure to ionizing radiation. Localized X-ray irradiation at clinically relevant doses (8 Gy) yields 50% drug (doxorubicin or monomethyl auristatin E, MMAE) release under hypoxic conditions that are traditionally associated with radiotherapy resistance. As proof-of-principle, we apply the approach to antibody– and albumin–drug conjugates and achieve >2000-fold enhanced MMAE cytotoxicity upon irradiation. Overall, this work establishes ionizing radiation as a strategy for spatially localized cancer drug delivery. |
---|