Cargando…

A High-Throughput Fluorescent Turn-On Assay for Inhibitors of DHHC Family Proteins

[Image: see text] As the “writer” enzymes of protein S-acylation, a dynamic and functionally significant post-translational modification (PTM), DHHC family proteins have emerged in the past decade as both key modulators of cellular homeostasis and as drivers of neoplastic, autoimmune, metabolic, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Tian, Azizi, Saara-Anne, Brookes, Noah, Lan, Tong, Dickinson, Bryan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391280/
https://www.ncbi.nlm.nih.gov/pubmed/35816339
http://dx.doi.org/10.1021/acschembio.2c00193
Descripción
Sumario:[Image: see text] As the “writer” enzymes of protein S-acylation, a dynamic and functionally significant post-translational modification (PTM), DHHC family proteins have emerged in the past decade as both key modulators of cellular homeostasis and as drivers of neoplastic, autoimmune, metabolic, and neurological pathologies. Currently, biological and clinical discovery is hampered by the limitations of existing DHHC family inhibitors, which possess poor physicochemical properties and off-target profiles. However, progress in identifying new inhibitory scaffolds has been meager, in part due to a lack of robust in vitro assays suitable for high-throughput screening (HTS). Here, we report the development of palmitoyl transferase probes (PTPs), a novel family of turn-on pro-fluorescent molecules that mimic the palmitoyl-CoA substrate of DHHC proteins. We use the PTPs to develop and validate an assay with an excellent Z′-factor for HTS. We then perform a pilot screen of 1687 acrylamide-based molecules against zDHHC20, establishing the PTP-based HTS assay as a platform for the discovery of improved DHHC family inhibitors.