Cargando…

Label-free chemical imaging of cytochrome P450 activity by Raman microscopy

Although investigating drug modulation of cytochrome P450 (CYP) activity under physiological conditions is crucial in drug development to avoid severe adverse drug reactions, the current evaluation approaches that rely on the destructive and end-point analysis can be misleading due to invasive treat...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Menglu, Nawa, Yasunori, Ishida, Seiichi, Kanda, Yasunari, Fujita, Satoshi, Fujita, Katsumasa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395422/
https://www.ncbi.nlm.nih.gov/pubmed/35995965
http://dx.doi.org/10.1038/s42003-022-03713-1
Descripción
Sumario:Although investigating drug modulation of cytochrome P450 (CYP) activity under physiological conditions is crucial in drug development to avoid severe adverse drug reactions, the current evaluation approaches that rely on the destructive and end-point analysis can be misleading due to invasive treatments and cellular heterogeneity. Here, we propose a non-destructive and high-content method for visualizing and quantifying intracellular CYP activity under drug administration by Raman microscopy. The redox-state and spin-state sensitive Raman measurement indicated that the induced CYPs in living hepatocytes were in oxidized and low-spin state, which is related to monooxygenase function of CYP. Moreover, glycogen depletion associated with CYP induction was simultaneously observed, indicating a relevant effect on glucose metabolism. By deciphering the overall changes in the biochemical fingerprints of hepatocytes, Raman microscopy offers a non-destructive and quantitative chemical imaging method to evaluate CYP activity at the single-cell level with the potential to facilitate future drug development schemes.