Cargando…
A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions
Drug combinations are a promising strategy to counter antibiotic resistance. However, current experimental and computational approaches do not account for the entire complexity involved in combination therapy design, such as the effect of pathogen metabolic heterogeneity, changes in the growth envir...
Autores principales: | Chung, Carolina H, Chandrasekaran, Sriram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396445/ https://www.ncbi.nlm.nih.gov/pubmed/36016709 http://dx.doi.org/10.1093/pnasnexus/pgac132 |
Ejemplares similares
-
Lysosomal Ca(2+) flux modulates automaticity in ventricular cardiomyocytes and correlates with arrhythmic risk
por: Xie, An, et al.
Publicado: (2023) -
Machine learning reveals the waggle drift’s role in the honey bee dance communication system
por: Dormagen, David M, et al.
Publicado: (2023) -
NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters
por: Leão, Tiago F, et al.
Publicado: (2022) -
Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures
por: Smith, Kirk, et al.
Publicado: (2022) -
Modelling and simulating generic RNA-Seq experiments with the flux simulator
por: Griebel, Thasso, et al.
Publicado: (2012)