Cargando…
Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection
Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy and applicability domain to the chemical space of the training compounds. In this work, we aimed to utilize both...
Autores principales: | Seal, Srijit, Carreras-Puigvert, Jordi, Trapotsi, Maria-Anna, Yang, Hongbin, Spjuth, Ola, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399120/ https://www.ncbi.nlm.nih.gov/pubmed/35999457 http://dx.doi.org/10.1038/s42003-022-03763-5 |
Ejemplares similares
-
Merging bioactivity predictions from cell morphology and chemical fingerprint models using similarity to training data
por: Seal, Srijit, et al.
Publicado: (2023) -
Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank
por: Seal, Srijit, et al.
Publicado: (2023) -
A phenomics approach for antiviral drug discovery
por: Rietdijk, Jonne, et al.
Publicado: (2021) -
Evaluating the utility of brightfield image data for mechanism of action prediction
por: Harrison, Philip John, et al.
Publicado: (2023) -
Computational analyses of mechanism of action (MoA): data, methods and integration
por: Trapotsi, Maria-Anna, et al.
Publicado: (2021)