Cargando…

Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway

PURPOSE: Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) proteins and leads to the maladaptive changes in myocardium. Endothelial cells (ECs) undergoing mesenchymal transition contributes to the occurrence and development of cardiac fibrosis. CD146 is an a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhao-Yu, Zhai, Chao, Yang, Xue-Yuan, Li, Hai-Bing, Wu, Li-Ling, Li, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401105/
https://www.ncbi.nlm.nih.gov/pubmed/36001597
http://dx.doi.org/10.1371/journal.pone.0273542
_version_ 1784772895163023360
author Zhang, Zhao-Yu
Zhai, Chao
Yang, Xue-Yuan
Li, Hai-Bing
Wu, Li-Ling
Li, Li
author_facet Zhang, Zhao-Yu
Zhai, Chao
Yang, Xue-Yuan
Li, Hai-Bing
Wu, Li-Ling
Li, Li
author_sort Zhang, Zhao-Yu
collection PubMed
description PURPOSE: Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) proteins and leads to the maladaptive changes in myocardium. Endothelial cells (ECs) undergoing mesenchymal transition contributes to the occurrence and development of cardiac fibrosis. CD146 is an adhesion molecule highly expressed in ECs. The present study was performed to explore the role of CD146 in modulating endothelial to mesenchymal transition (EndMT). METHODS: C57BL/6 mice were subjected to subcutaneous implantation of osmotic minipump infused with angiotensin II (Ang Ⅱ). Adenovirus carrying CD146 short hairpin RNA (shRNA) or CD146 encoding sequence were infected into cultured human umbilical vein endothelial cells (HUVECs) followed by stimulation with Ang II or transforming growth factor-β1 (TGF-β1). Differentially expressed genes were revealed by RNA-sequencing (RNA-Seq) analysis. Gene expression was measured by quantitative real-time PCR, and protein expression and distribution were determined by Western blot and immunofluorescence staining, respectively. RESULTS: CD146 was predominantly expressed by ECs in normal mouse hearts. CD146 was upregulated in ECs but not fibroblasts and myocytes in hearts of Ang II-infused mice and in HUVECs stimulated with Ang Ⅱ. RNA-Seq analysis revealed the differentially expressed genes related to EndMT and Wnt/β-catenin signaling pathway. CD146 knockdown and overexpression facilitated and attenuated, respectively, EndMT induced by Ang II or TGF-β1. CD146 knockdown upregulated Wnt pathway-related genes including Wnt4, LEF1, HNF4A, FOXA1, SOX6, and CCND3, and increased the protein level and nuclear translocation of β-catenin. CONCLUSIONS: Knockdown of CD146 exerts promotional effects on EndMT via activating Wnt/β-catenin pathway and the upregulation of CD146 might play a protective role against EndMT and cardiac fibrosis.
format Online
Article
Text
id pubmed-9401105
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-94011052022-08-25 Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway Zhang, Zhao-Yu Zhai, Chao Yang, Xue-Yuan Li, Hai-Bing Wu, Li-Ling Li, Li PLoS One Research Article PURPOSE: Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) proteins and leads to the maladaptive changes in myocardium. Endothelial cells (ECs) undergoing mesenchymal transition contributes to the occurrence and development of cardiac fibrosis. CD146 is an adhesion molecule highly expressed in ECs. The present study was performed to explore the role of CD146 in modulating endothelial to mesenchymal transition (EndMT). METHODS: C57BL/6 mice were subjected to subcutaneous implantation of osmotic minipump infused with angiotensin II (Ang Ⅱ). Adenovirus carrying CD146 short hairpin RNA (shRNA) or CD146 encoding sequence were infected into cultured human umbilical vein endothelial cells (HUVECs) followed by stimulation with Ang II or transforming growth factor-β1 (TGF-β1). Differentially expressed genes were revealed by RNA-sequencing (RNA-Seq) analysis. Gene expression was measured by quantitative real-time PCR, and protein expression and distribution were determined by Western blot and immunofluorescence staining, respectively. RESULTS: CD146 was predominantly expressed by ECs in normal mouse hearts. CD146 was upregulated in ECs but not fibroblasts and myocytes in hearts of Ang II-infused mice and in HUVECs stimulated with Ang Ⅱ. RNA-Seq analysis revealed the differentially expressed genes related to EndMT and Wnt/β-catenin signaling pathway. CD146 knockdown and overexpression facilitated and attenuated, respectively, EndMT induced by Ang II or TGF-β1. CD146 knockdown upregulated Wnt pathway-related genes including Wnt4, LEF1, HNF4A, FOXA1, SOX6, and CCND3, and increased the protein level and nuclear translocation of β-catenin. CONCLUSIONS: Knockdown of CD146 exerts promotional effects on EndMT via activating Wnt/β-catenin pathway and the upregulation of CD146 might play a protective role against EndMT and cardiac fibrosis. Public Library of Science 2022-08-24 /pmc/articles/PMC9401105/ /pubmed/36001597 http://dx.doi.org/10.1371/journal.pone.0273542 Text en © 2022 Zhang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Zhang, Zhao-Yu
Zhai, Chao
Yang, Xue-Yuan
Li, Hai-Bing
Wu, Li-Ling
Li, Li
Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway
title Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway
title_full Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway
title_fullStr Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway
title_full_unstemmed Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway
title_short Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway
title_sort knockdown of cd146 promotes endothelial-to-mesenchymal transition via wnt/β-catenin pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401105/
https://www.ncbi.nlm.nih.gov/pubmed/36001597
http://dx.doi.org/10.1371/journal.pone.0273542
work_keys_str_mv AT zhangzhaoyu knockdownofcd146promotesendothelialtomesenchymaltransitionviawntbcateninpathway
AT zhaichao knockdownofcd146promotesendothelialtomesenchymaltransitionviawntbcateninpathway
AT yangxueyuan knockdownofcd146promotesendothelialtomesenchymaltransitionviawntbcateninpathway
AT lihaibing knockdownofcd146promotesendothelialtomesenchymaltransitionviawntbcateninpathway
AT wuliling knockdownofcd146promotesendothelialtomesenchymaltransitionviawntbcateninpathway
AT lili knockdownofcd146promotesendothelialtomesenchymaltransitionviawntbcateninpathway