Cargando…

Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records

False assumptions that sex and gender are binary, static, and concordant are deeply embedded in the medical system. As machine learning researchers use medical data to build tools to solve novel problems, understanding how existing systems represent sex/gender incorrectly is necessary to avoid perpe...

Descripción completa

Detalles Bibliográficos
Autores principales: Albert, Kendra, Delano, Maggie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403398/
https://www.ncbi.nlm.nih.gov/pubmed/36033589
http://dx.doi.org/10.1016/j.patter.2022.100534