Cargando…
Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records
False assumptions that sex and gender are binary, static, and concordant are deeply embedded in the medical system. As machine learning researchers use medical data to build tools to solve novel problems, understanding how existing systems represent sex/gender incorrectly is necessary to avoid perpe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403398/ https://www.ncbi.nlm.nih.gov/pubmed/36033589 http://dx.doi.org/10.1016/j.patter.2022.100534 |
_version_ | 1784773367170072576 |
---|---|
author | Albert, Kendra Delano, Maggie |
author_facet | Albert, Kendra Delano, Maggie |
author_sort | Albert, Kendra |
collection | PubMed |
description | False assumptions that sex and gender are binary, static, and concordant are deeply embedded in the medical system. As machine learning researchers use medical data to build tools to solve novel problems, understanding how existing systems represent sex/gender incorrectly is necessary to avoid perpetuating harm. In this perspective, we identify and discuss three factors to consider when working with sex/gender in research: “sex/gender slippage,” the frequent substitution of sex and sex-related terms for gender and vice versa; “sex confusion,” the fact that any given sex variable holds many different potential meanings; and “sex obsession,” the idea that the relevant variable for most inquiries related to sex/gender is sex assigned at birth. We then explore how these phenomena show up in medical machine learning research using electronic health records, with a specific focus on HIV risk prediction. Finally, we offer recommendations about how machine learning researchers can engage more carefully with questions of sex/gender. |
format | Online Article Text |
id | pubmed-9403398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94033982022-08-26 Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records Albert, Kendra Delano, Maggie Patterns (N Y) Perspective False assumptions that sex and gender are binary, static, and concordant are deeply embedded in the medical system. As machine learning researchers use medical data to build tools to solve novel problems, understanding how existing systems represent sex/gender incorrectly is necessary to avoid perpetuating harm. In this perspective, we identify and discuss three factors to consider when working with sex/gender in research: “sex/gender slippage,” the frequent substitution of sex and sex-related terms for gender and vice versa; “sex confusion,” the fact that any given sex variable holds many different potential meanings; and “sex obsession,” the idea that the relevant variable for most inquiries related to sex/gender is sex assigned at birth. We then explore how these phenomena show up in medical machine learning research using electronic health records, with a specific focus on HIV risk prediction. Finally, we offer recommendations about how machine learning researchers can engage more carefully with questions of sex/gender. Elsevier 2022-08-12 /pmc/articles/PMC9403398/ /pubmed/36033589 http://dx.doi.org/10.1016/j.patter.2022.100534 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Perspective Albert, Kendra Delano, Maggie Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records |
title | Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records |
title_full | Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records |
title_fullStr | Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records |
title_full_unstemmed | Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records |
title_short | Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records |
title_sort | sex trouble: sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403398/ https://www.ncbi.nlm.nih.gov/pubmed/36033589 http://dx.doi.org/10.1016/j.patter.2022.100534 |
work_keys_str_mv | AT albertkendra sextroublesexgenderslippagesexconfusionandsexobsessioninmachinelearningusingelectronichealthrecords AT delanomaggie sextroublesexgenderslippagesexconfusionandsexobsessioninmachinelearningusingelectronichealthrecords |