Cargando…
An Interpretable Machine-Learning Algorithm to Predict Disordered Protein Phase Separation Based on Biophysical Interactions
Protein phase separation is increasingly understood to be an important mechanism of biological organization and biomaterial formation. Intrinsically disordered protein regions (IDRs) are often significant drivers of protein phase separation. A number of protein phase-separation-prediction algorithms...
Autores principales: | Cai, Hao, Vernon, Robert M., Forman-Kay, Julie D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405563/ https://www.ncbi.nlm.nih.gov/pubmed/36009025 http://dx.doi.org/10.3390/biom12081131 |
Ejemplares similares
-
Biophysics of Phase Separation of Disordered Proteins
Is Governed by Balance between Short- And Long-Range Interactions
por: Hazra, Milan Kumar, et al.
Publicado: (2021) -
Biological phase separation: cell biology meets biophysics
por: Yoshizawa, Takuya, et al.
Publicado: (2020) -
Pi-Pi contacts are an overlooked protein feature relevant to phase separation
por: Vernon, Robert McCoy, et al.
Publicado: (2018) -
BIOPHYSICAL PREDICTION OF PROTEIN-PEPTIDE INTERACTIONS AND SIGNALING NETWORKS USING MACHINE LEARNING
por: Cunningham, Joseph M., et al.
Publicado: (2020) -
Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma
por: Bai, Bing‐li, et al.
Publicado: (2022)