Cargando…
The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence
HIGHLIGHTS: Deregulation in MMR mechanism and miR-21, miR-155 and miR-451a are caused by chronic exposure to N-Nitrosamines, NNK and NDEA, and nicotine. Reduced hMSH2 and hMLH1 gene expression profiles and miRNA deregulations can be detected both at early stages of tobacco smoke-related carcinogenes...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406897/ https://www.ncbi.nlm.nih.gov/pubmed/36005175 http://dx.doi.org/10.3390/curroncol29080437 |
_version_ | 1784774233568575488 |
---|---|
author | Doukas, Sotirios G. Vageli, Dimitra P. Doukas, Panagiotis G. Nikitovic, Dragana Tsatsakis, Aristidis Judson, Benjamin L. |
author_facet | Doukas, Sotirios G. Vageli, Dimitra P. Doukas, Panagiotis G. Nikitovic, Dragana Tsatsakis, Aristidis Judson, Benjamin L. |
author_sort | Doukas, Sotirios G. |
collection | PubMed |
description | HIGHLIGHTS: Deregulation in MMR mechanism and miR-21, miR-155 and miR-451a are caused by chronic exposure to N-Nitrosamines, NNK and NDEA, and nicotine. Reduced hMSH2 and hMLH1 gene expression profiles and miRNA deregulations can be detected both at early stages of tobacco smoke-related carcinogenesis and in invasive cancers of the upper aerodigestive tract in smokers. MMR gene expression phenotypes are strongly linked to deregulated specific miRNAs, such as miR-21, miR-155, miR-34a and miR-451a. The activation of NF-κB may play a role in tobacco smoke-induced MMR dysfunction and carcinogenesis in the upper aerodigestive tract. ABSTRACT: Deregulation of the DNA mismatch repair (MMR) mechanism has been linked to poor prognosis of upper aerodigestive tract cancers. Our recent in vitro data have provided evidence of crosstalk between deregulated miRNAs and MMR genes, caused by tobacco smoke (TS) N-Nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in hypopharyngeal cells. Here, we explored whether chronic exposure to TS components can affect MMR mechanism and miRNA profiles in hypopharyngeal mucosa. Using a mouse model (C57Bl/6J wild type) of in vivo 14-week exposure to NNK (0.2 mmol/L) and N-Nitrosodiethylamine (NDEA; 0.004 mmol/L), with or without nicotine (0.02 μmol/L), we provide direct evidence that TS components can promote dysplasia, significant downregulation of Msh2 and Mlh1 genes and deregulation of miR-21, miR-155, miR-34a, and miR-451a. By analyzing eight human specimens from tobacco smokers and eight controls, we provide clinical evidence of a significant reduction in hMSH2 and hMLH1 mRNAs in hypopharyngeal squamous cell carcinoma (HSCC). In summary, deregulation of the MMR mechanism and miRNAs is caused by chronic exposure to TS-related N-Nitrosamines, with or without nicotine, in the early stages of upper aerodigestive tract carcinogenesis, and can also be detected in human HSCC. Thus, we encourage future studies to further elucidate a possible in vivo dose-dependent effect of individual or combined N-Nitrosamines, NNK and/or NDEA, and nicotine, on the MMR mechanism and their clinical testing to elaborate prognosis and risk assessment. |
format | Online Article Text |
id | pubmed-9406897 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94068972022-08-26 The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence Doukas, Sotirios G. Vageli, Dimitra P. Doukas, Panagiotis G. Nikitovic, Dragana Tsatsakis, Aristidis Judson, Benjamin L. Curr Oncol Article HIGHLIGHTS: Deregulation in MMR mechanism and miR-21, miR-155 and miR-451a are caused by chronic exposure to N-Nitrosamines, NNK and NDEA, and nicotine. Reduced hMSH2 and hMLH1 gene expression profiles and miRNA deregulations can be detected both at early stages of tobacco smoke-related carcinogenesis and in invasive cancers of the upper aerodigestive tract in smokers. MMR gene expression phenotypes are strongly linked to deregulated specific miRNAs, such as miR-21, miR-155, miR-34a and miR-451a. The activation of NF-κB may play a role in tobacco smoke-induced MMR dysfunction and carcinogenesis in the upper aerodigestive tract. ABSTRACT: Deregulation of the DNA mismatch repair (MMR) mechanism has been linked to poor prognosis of upper aerodigestive tract cancers. Our recent in vitro data have provided evidence of crosstalk between deregulated miRNAs and MMR genes, caused by tobacco smoke (TS) N-Nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in hypopharyngeal cells. Here, we explored whether chronic exposure to TS components can affect MMR mechanism and miRNA profiles in hypopharyngeal mucosa. Using a mouse model (C57Bl/6J wild type) of in vivo 14-week exposure to NNK (0.2 mmol/L) and N-Nitrosodiethylamine (NDEA; 0.004 mmol/L), with or without nicotine (0.02 μmol/L), we provide direct evidence that TS components can promote dysplasia, significant downregulation of Msh2 and Mlh1 genes and deregulation of miR-21, miR-155, miR-34a, and miR-451a. By analyzing eight human specimens from tobacco smokers and eight controls, we provide clinical evidence of a significant reduction in hMSH2 and hMLH1 mRNAs in hypopharyngeal squamous cell carcinoma (HSCC). In summary, deregulation of the MMR mechanism and miRNAs is caused by chronic exposure to TS-related N-Nitrosamines, with or without nicotine, in the early stages of upper aerodigestive tract carcinogenesis, and can also be detected in human HSCC. Thus, we encourage future studies to further elucidate a possible in vivo dose-dependent effect of individual or combined N-Nitrosamines, NNK and/or NDEA, and nicotine, on the MMR mechanism and their clinical testing to elaborate prognosis and risk assessment. MDPI 2022-08-04 /pmc/articles/PMC9406897/ /pubmed/36005175 http://dx.doi.org/10.3390/curroncol29080437 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Doukas, Sotirios G. Vageli, Dimitra P. Doukas, Panagiotis G. Nikitovic, Dragana Tsatsakis, Aristidis Judson, Benjamin L. The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence |
title | The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence |
title_full | The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence |
title_fullStr | The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence |
title_full_unstemmed | The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence |
title_short | The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence |
title_sort | effect of tobacco smoke n-nitrosamines, nnk and ndea, and nicotine, on dna mismatch repair mechanism and mirna markers, in hypopharyngeal squamous cell carcinoma: an in vivo model and clinical evidence |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406897/ https://www.ncbi.nlm.nih.gov/pubmed/36005175 http://dx.doi.org/10.3390/curroncol29080437 |
work_keys_str_mv | AT doukassotiriosg theeffectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT vagelidimitrap theeffectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT doukaspanagiotisg theeffectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT nikitovicdragana theeffectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT tsatsakisaristidis theeffectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT judsonbenjaminl theeffectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT doukassotiriosg effectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT vagelidimitrap effectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT doukaspanagiotisg effectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT nikitovicdragana effectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT tsatsakisaristidis effectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence AT judsonbenjaminl effectoftobaccosmokennitrosaminesnnkandndeaandnicotineondnamismatchrepairmechanismandmirnamarkersinhypopharyngealsquamouscellcarcinomaaninvivomodelandclinicalevidence |