Cargando…
PARA: A New Platform for the Rapid Assembly of gRNA Arrays for Multiplexed CRISPR Technologies
Multiplexed CRISPR technologies have great potential for pathway engineering and genome editing. However, their applications are constrained by complex, laborious and time-consuming cloning steps. In this research, we developed a novel method, PARA, which allows for the one-step assembly of multiple...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406951/ https://www.ncbi.nlm.nih.gov/pubmed/36010544 http://dx.doi.org/10.3390/cells11162467 |
Sumario: | Multiplexed CRISPR technologies have great potential for pathway engineering and genome editing. However, their applications are constrained by complex, laborious and time-consuming cloning steps. In this research, we developed a novel method, PARA, which allows for the one-step assembly of multiple guide RNAs (gRNAs) into a CRISPR vector with up to 18 gRNAs. Here, we demonstrate that PARA is capable of the efficient assembly of transfer RNA/Csy4/ribozyme-based gRNA arrays. To aid in this process and to streamline vector construction, we developed a user-friendly PARAweb tool for designing PCR primers and component DNA parts and simulating assembled gRNA arrays and vector sequences. |
---|