Cargando…
An Antibody from Single Human V(H)-rearranging Mouse Neutralizes All SARS-CoV-2 Variants Through BA.5 by Inhibiting Membrane Fusion
SARS-CoV-2 Omicron sub-variants have generated a world-wide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron sub-variants and prepare for potential new variants, additional means of isolating broad an...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407951/ https://www.ncbi.nlm.nih.gov/pubmed/35951767 http://dx.doi.org/10.1126/sciimmunol.add5446 |
Sumario: | SARS-CoV-2 Omicron sub-variants have generated a world-wide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron sub-variants and prepare for potential new variants, additional means of isolating broad and potent humanized SARS-CoV-2-neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human V(H)1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact complementarity-region-3 (CDR3) sequences generated by non-templated junctional modifications during V(D)J recombination. Immunizing the human V(H)1-2/Vκ1-33-rearranging mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several V(H)1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior human patient-derived V(H)1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding-motif via a CDR3-dominated recognition mode. Lattice-light-sheet-microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis, but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and non-traditonal mechanism of action suggest this antibody might have therapeutic potential. Likewise, the SP1-77 binding epitope may further inform on vacccine strategies. Finally, the general class of humanized mouse models we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens. |
---|