Cargando…
Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels
Y55W mutants of non-selective NaK and partly K(+)-selective NaK2K channels have been used to explore the conformational dynamics at the pore region of these channels as they interact with either Na(+) or K(+). A major conclusion is that these channels exhibit a remarkable pore conformational flexibi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409022/ https://www.ncbi.nlm.nih.gov/pubmed/36012519 http://dx.doi.org/10.3390/ijms23169246 |
_version_ | 1784774747664416768 |
---|---|
author | Giudici, Ana Marcela Renart, María Lourdes Coutinho, Ana Morales, Andrés González-Ros, José Manuel Poveda, José Antonio |
author_facet | Giudici, Ana Marcela Renart, María Lourdes Coutinho, Ana Morales, Andrés González-Ros, José Manuel Poveda, José Antonio |
author_sort | Giudici, Ana Marcela |
collection | PubMed |
description | Y55W mutants of non-selective NaK and partly K(+)-selective NaK2K channels have been used to explore the conformational dynamics at the pore region of these channels as they interact with either Na(+) or K(+). A major conclusion is that these channels exhibit a remarkable pore conformational flexibility. Homo-FRET measurements reveal a large change in W55–W55 intersubunit distances, enabling the selectivity filter (SF) to admit different species, thus, favoring poor or no selectivity. Depending on the cation, these channels exhibit wide-open conformations of the SF in Na(+), or tight induced-fit conformations in K(+), most favored in the four binding sites containing NaK2K channels. Such conformational flexibility seems to arise from an altered pattern of restricting interactions between the SF and the protein scaffold behind it. Additionally, binding experiments provide clues to explain such poor selectivity. Compared to the K(+)-selective KcsA channel, these channels lack a high affinity K(+) binding component and do not collapse in Na(+). Thus, they cannot properly select K(+) over competing cations, nor reject Na(+) by collapsing, as K(+)-selective channels do. Finally, these channels do not show C-type inactivation, likely because their submillimolar K(+) binding affinities prevent an efficient K(+) loss from their SF, thus favoring permanently open channel states. |
format | Online Article Text |
id | pubmed-9409022 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94090222022-08-26 Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels Giudici, Ana Marcela Renart, María Lourdes Coutinho, Ana Morales, Andrés González-Ros, José Manuel Poveda, José Antonio Int J Mol Sci Article Y55W mutants of non-selective NaK and partly K(+)-selective NaK2K channels have been used to explore the conformational dynamics at the pore region of these channels as they interact with either Na(+) or K(+). A major conclusion is that these channels exhibit a remarkable pore conformational flexibility. Homo-FRET measurements reveal a large change in W55–W55 intersubunit distances, enabling the selectivity filter (SF) to admit different species, thus, favoring poor or no selectivity. Depending on the cation, these channels exhibit wide-open conformations of the SF in Na(+), or tight induced-fit conformations in K(+), most favored in the four binding sites containing NaK2K channels. Such conformational flexibility seems to arise from an altered pattern of restricting interactions between the SF and the protein scaffold behind it. Additionally, binding experiments provide clues to explain such poor selectivity. Compared to the K(+)-selective KcsA channel, these channels lack a high affinity K(+) binding component and do not collapse in Na(+). Thus, they cannot properly select K(+) over competing cations, nor reject Na(+) by collapsing, as K(+)-selective channels do. Finally, these channels do not show C-type inactivation, likely because their submillimolar K(+) binding affinities prevent an efficient K(+) loss from their SF, thus favoring permanently open channel states. MDPI 2022-08-17 /pmc/articles/PMC9409022/ /pubmed/36012519 http://dx.doi.org/10.3390/ijms23169246 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Giudici, Ana Marcela Renart, María Lourdes Coutinho, Ana Morales, Andrés González-Ros, José Manuel Poveda, José Antonio Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels |
title | Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels |
title_full | Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels |
title_fullStr | Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels |
title_full_unstemmed | Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels |
title_short | Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels |
title_sort | molecular events behind the selectivity and inactivation properties of model nak-derived ion channels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409022/ https://www.ncbi.nlm.nih.gov/pubmed/36012519 http://dx.doi.org/10.3390/ijms23169246 |
work_keys_str_mv | AT giudicianamarcela moleculareventsbehindtheselectivityandinactivationpropertiesofmodelnakderivedionchannels AT renartmarialourdes moleculareventsbehindtheselectivityandinactivationpropertiesofmodelnakderivedionchannels AT coutinhoana moleculareventsbehindtheselectivityandinactivationpropertiesofmodelnakderivedionchannels AT moralesandres moleculareventsbehindtheselectivityandinactivationpropertiesofmodelnakderivedionchannels AT gonzalezrosjosemanuel moleculareventsbehindtheselectivityandinactivationpropertiesofmodelnakderivedionchannels AT povedajoseantonio moleculareventsbehindtheselectivityandinactivationpropertiesofmodelnakderivedionchannels |