Cargando…
Estimation of Soluble Solids for Stone Fruit Varieties Based on Near-Infrared Spectra Using Machine Learning Techniques
The quality control for fruit maturity inspection is a key issue in fruit packaging and international trade. The quantification of Soluble Solids (SS) in fruits gives a good approximation of the total sugar concentration at the ripe stage, and on the other hand, SS alone or in combination with acidi...
Autores principales: | Escárate, Pedro, Farias, Gonzalo, Naranjo, Paulina, Zoffoli, Juan Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413355/ https://www.ncbi.nlm.nih.gov/pubmed/36015842 http://dx.doi.org/10.3390/s22166081 |
Ejemplares similares
-
Calibration of Near Infrared Spectroscopy of Apples with Different Fruit Sizes to Improve Soluble Solids Content Model Performance
por: Jiang, Xiaogang, et al.
Publicado: (2022) -
Machine learning applied to near-infrared spectra for clinical pleural effusion classification
por: Chen, Zhongjian, et al.
Publicado: (2021) -
Consensual Regression of Soluble Solids Content in Peach by Near Infrared Spectrocopy
por: Yuan, Lei-Ming, et al.
Publicado: (2022) -
Effects of Varieties, Producing Areas, Ears, and Ear Positions of Single Maize Kernels on Near-Infrared Spectra for Identification and Traceability
por: An, Dong, et al.
Publicado: (2016) -
Near Infrared Spectral Linearisation in Quantifying Soluble Solids Content of Intact Carambola
por: Omar, Ahmad Fairuz, et al.
Publicado: (2013)