Cargando…

Breaking the Iron Homeostasis: A “Trojan Horse” Self-Assembled Nanodrug Sensitizes Homologous Recombination Proficient Ovarian Cancer Cells to PARP Inhibition

[Image: see text] Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors are used in ovarian cancer treatment and have greatly improved the survival rates for homologous recombination repair (HRR)-deficient patients. However, their therapeutic efficacy is limited in HRR-proficient ovarian c...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yangyang, Cen, Yixuan, Fang, Yifeng, Tang, Sangsang, Li, Sen, Ren, Yan, Zhang, Hongbo, Lu, Weiguo, Xu, Junfen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413404/
https://www.ncbi.nlm.nih.gov/pubmed/35920396
http://dx.doi.org/10.1021/acsnano.2c04956
Descripción
Sumario:[Image: see text] Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors are used in ovarian cancer treatment and have greatly improved the survival rates for homologous recombination repair (HRR)-deficient patients. However, their therapeutic efficacy is limited in HRR-proficient ovarian cancer. Thus, sensitizing HRR-proficient ovarian cancer cells to PARP inhibitors is important in clinical practice. Here, a nanodrug, olaparib-Ga, was designed using self-assembly of the PARP inhibitor olaparib into bovine serum albumin through gallic acid gallium(III) coordination via a convenient and green synthetic method. Compared with olaparib, olaparib-Ga featured an ultrasmall size of 7 nm and led to increased suppression of cell viability, induction of DNA damage, and enhanced cell apoptosis in the SKOV3 and OVCAR3 HRR-proficient ovarian cancer cells in vitro. Further experiments indicated that the olaparib-Ga nanodrug could suppress RRM2 expression, activate the Fe(2+)/ROS/MAPK pathway and HMOX1 signaling, inhibit the PI3K/AKT signaling pathway, and enhance the expression of cleaved-caspase 3 and BAX protein. This, in turn, led to increased cell apoptosis in HRR-proficient ovarian cancer cells. Moreover, olaparib-Ga effectively restrained SKOV3 and OVCAR3 tumor growth and exhibited negligible toxicity in vivo. In conclusion, we propose that olaparib-Ga can act as a promising nanodrug for the treatment of HRR-proficient ovarian cancer.