Cargando…
Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine
The HER3/ERBB3 receptor is an oncogenic receptor tyrosine kinase that forms heterodimers with EGFR family members and is overexpressed in numerous cancers. HER3 overexpression associates with reduced survival and acquired resistance to targeted therapies, making it a potential therapeutic target in...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414303/ https://www.ncbi.nlm.nih.gov/pubmed/34785506 http://dx.doi.org/10.1158/2326-6066.CIR-21-0454 |
_version_ | 1784775955651231744 |
---|---|
author | Basu, Amrita Albert, Gabriella K. Awshah, Sabrina Datta, Jashodeep Kodumudi, Krithika N. Gallen, Corey Beyer, Amber Smalley, Keiran S.M. Rodriguez, Paulo C. Duckett, Derek R. Forsyth, Peter A. Soyano, Aixa Koski, Gary K. Lima Barros Costa, Ricardo Han, Heather Soliman, Hatem Lee, Marie Catherine Kalinski, Pawel Czerniecki, Brian J. |
author_facet | Basu, Amrita Albert, Gabriella K. Awshah, Sabrina Datta, Jashodeep Kodumudi, Krithika N. Gallen, Corey Beyer, Amber Smalley, Keiran S.M. Rodriguez, Paulo C. Duckett, Derek R. Forsyth, Peter A. Soyano, Aixa Koski, Gary K. Lima Barros Costa, Ricardo Han, Heather Soliman, Hatem Lee, Marie Catherine Kalinski, Pawel Czerniecki, Brian J. |
author_sort | Basu, Amrita |
collection | PubMed |
description | The HER3/ERBB3 receptor is an oncogenic receptor tyrosine kinase that forms heterodimers with EGFR family members and is overexpressed in numerous cancers. HER3 overexpression associates with reduced survival and acquired resistance to targeted therapies, making it a potential therapeutic target in multiple cancer types. Here, we report on immunogenic, promiscuous MHC class II–binding HER3 peptides, which can generate HER3-specific CD4(+) Th1 antitumor immune responses. Using an overlapping peptide screening methodology, we identified nine MHC class II–binding HER3 epitopes that elicited specific Th1 immune response in both healthy donors and breast cancer patients. Most of these peptides were not identified by current binding algorithms. Homology assessment of amino acid sequence BLAST showed >90% sequence similarity between human and murine HER3/ERBB3 peptide sequences. HER3 peptide–pulsed dendritic cell vaccination resulted in anti-HER3 CD4(+) Th1 responses that prevented tumor development, significantly delayed tumor growth in prevention models, and caused regression in multiple therapeutic models of HER3-expressing murine tumors, including mammary carcinoma and melanoma. Tumors were robustly infiltrated with CD4(+) T cells, suggesting their key role in tumor rejection. Our data demonstrate that class II HER3 promiscuous peptides are effective at inducing HER3-specific CD4(+) Th1 responses and suggest their applicability in immunotherapies for human HER3-overexpressing tumors. |
format | Online Article Text |
id | pubmed-9414303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-94143032023-01-05 Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine Basu, Amrita Albert, Gabriella K. Awshah, Sabrina Datta, Jashodeep Kodumudi, Krithika N. Gallen, Corey Beyer, Amber Smalley, Keiran S.M. Rodriguez, Paulo C. Duckett, Derek R. Forsyth, Peter A. Soyano, Aixa Koski, Gary K. Lima Barros Costa, Ricardo Han, Heather Soliman, Hatem Lee, Marie Catherine Kalinski, Pawel Czerniecki, Brian J. Cancer Immunol Res Research Articles The HER3/ERBB3 receptor is an oncogenic receptor tyrosine kinase that forms heterodimers with EGFR family members and is overexpressed in numerous cancers. HER3 overexpression associates with reduced survival and acquired resistance to targeted therapies, making it a potential therapeutic target in multiple cancer types. Here, we report on immunogenic, promiscuous MHC class II–binding HER3 peptides, which can generate HER3-specific CD4(+) Th1 antitumor immune responses. Using an overlapping peptide screening methodology, we identified nine MHC class II–binding HER3 epitopes that elicited specific Th1 immune response in both healthy donors and breast cancer patients. Most of these peptides were not identified by current binding algorithms. Homology assessment of amino acid sequence BLAST showed >90% sequence similarity between human and murine HER3/ERBB3 peptide sequences. HER3 peptide–pulsed dendritic cell vaccination resulted in anti-HER3 CD4(+) Th1 responses that prevented tumor development, significantly delayed tumor growth in prevention models, and caused regression in multiple therapeutic models of HER3-expressing murine tumors, including mammary carcinoma and melanoma. Tumors were robustly infiltrated with CD4(+) T cells, suggesting their key role in tumor rejection. Our data demonstrate that class II HER3 promiscuous peptides are effective at inducing HER3-specific CD4(+) Th1 responses and suggest their applicability in immunotherapies for human HER3-overexpressing tumors. American Association for Cancer Research 2022-01-01 2021-11-16 /pmc/articles/PMC9414303/ /pubmed/34785506 http://dx.doi.org/10.1158/2326-6066.CIR-21-0454 Text en ©2021 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. |
spellingShingle | Research Articles Basu, Amrita Albert, Gabriella K. Awshah, Sabrina Datta, Jashodeep Kodumudi, Krithika N. Gallen, Corey Beyer, Amber Smalley, Keiran S.M. Rodriguez, Paulo C. Duckett, Derek R. Forsyth, Peter A. Soyano, Aixa Koski, Gary K. Lima Barros Costa, Ricardo Han, Heather Soliman, Hatem Lee, Marie Catherine Kalinski, Pawel Czerniecki, Brian J. Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine |
title | Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine |
title_full | Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine |
title_fullStr | Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine |
title_full_unstemmed | Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine |
title_short | Identification of Immunogenic MHC Class II Human HER3 Peptides that Mediate Anti-HER3 CD4(+) Th1 Responses and Potential Use as a Cancer Vaccine |
title_sort | identification of immunogenic mhc class ii human her3 peptides that mediate anti-her3 cd4(+) th1 responses and potential use as a cancer vaccine |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414303/ https://www.ncbi.nlm.nih.gov/pubmed/34785506 http://dx.doi.org/10.1158/2326-6066.CIR-21-0454 |
work_keys_str_mv | AT basuamrita identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT albertgabriellak identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT awshahsabrina identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT dattajashodeep identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT kodumudikrithikan identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT gallencorey identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT beyeramber identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT smalleykeiransm identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT rodriguezpauloc identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT duckettderekr identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT forsythpetera identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT soyanoaixa identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT koskigaryk identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT limabarroscostaricardo identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT hanheather identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT solimanhatem identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT leemariecatherine identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT kalinskipawel identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine AT czernieckibrianj identificationofimmunogenicmhcclassiihumanher3peptidesthatmediateantiher3cd4th1responsesandpotentialuseasacancervaccine |