Cargando…
An AI-powered Electronic Nose System with Fingerprint Extraction for Aroma Recognition of Coffee Beans
Aroma and taste have long been considered important indicators of quality coffee. Specialty coffee, that is, coffee from a single estate, farm, or village in a coffee-growing region, in particular, has a unique aroma that reflects the coffee-producing region. In order to enable the traceability of c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414376/ https://www.ncbi.nlm.nih.gov/pubmed/36014234 http://dx.doi.org/10.3390/mi13081313 |
Sumario: | Aroma and taste have long been considered important indicators of quality coffee. Specialty coffee, that is, coffee from a single estate, farm, or village in a coffee-growing region, in particular, has a unique aroma that reflects the coffee-producing region. In order to enable the traceability of coffee origin, in this study we have developed an e-nose system to discriminate the aroma of freshly roasted coffee in different production regions. In the case study, we employed the e-nose system to experiment with various machine learning models for recognizing several collected coffee beans such as coffees from Yirgacheffe and Kona. Additionally, our contribution also includes the development of a method to create an aromatic digital fingerprint of a specific coffee bean to identify its origin. The experimental results show that the developed e-nose system achieves good recognition performance for coffee aroma recognition. The extracted digital fingerprints have great potential to be stored in an extensible coffee aroma database similar to a comprehensive library of specific coffee bean aroma characteristics, for traceability and reconfirmation of their origin. |
---|