Cargando…
Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study
Background: Few studies have examined associations between ultra-processed food intake and biomarkers of inflammation, and inconsistent results have been reported in the small number of studies that do exist. As such, further investigation is required. Methods: Cross-sectional baseline data from the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415636/ https://www.ncbi.nlm.nih.gov/pubmed/36014818 http://dx.doi.org/10.3390/nu14163309 |
Sumario: | Background: Few studies have examined associations between ultra-processed food intake and biomarkers of inflammation, and inconsistent results have been reported in the small number of studies that do exist. As such, further investigation is required. Methods: Cross-sectional baseline data from the Melbourne Collaborative Cohort Study (MCCS) were analysed (n = 2018). We applied the NOVA food classification system to data from a food frequency questionnaire (FFQ) to determine ultra-processed food intake (g/day). The outcome was high-sensitivity C-reactive protein concentration (hsCRP; mg/L). We fitted unadjusted and adjusted linear regression analyses, with sociodemographic characteristics and lifestyle- and health-related behaviours as covariates. Supplementary analyses further adjusted for body mass index (kg/m(2)). Sex was assessed as a possible effect modifier. Ultra-processed food intake was modelled as 100 g increments and the magnitude of associations expressed as estimated relative change in hsCRP concentration with accompanying 95% confidence intervals (95%CIs). Results: After adjustment, every 100 g increase in ultra-processed food intake was associated with a 4.0% increase in hsCRP concentration (95%CIs: 2.1–5.9%, p < 0.001). Supplementary analyses showed that part of this association was independent of body mass index (estimated relative change in hsCRP: 2.5%; 95%CIs: 0.8–4.3%, p = 0.004). No interaction was observed between sex and ultra-processed food intake. Conclusion: Higher ultra-processed food intake was cross-sectionally associated with elevated hsCRP, which appeared to occur independent of body mass index. Future prospective and intervention studies are necessary to confirm directionality and whether the observed association is causal. |
---|