Cargando…
An Efficient Ensemble Deep Learning Approach for Semantic Point Cloud Segmentation Based on 3D Geometric Features and Range Images
Mobile light detection and ranging (LiDAR) sensor point clouds are used in many fields such as road network management, architecture and urban planning, and 3D High Definition (HD) city maps for autonomous vehicles. Semantic segmentation of mobile point clouds is critical for these tasks. In this st...
Autores principales: | Atik, Muhammed Enes, Duran, Zaide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416655/ https://www.ncbi.nlm.nih.gov/pubmed/36015964 http://dx.doi.org/10.3390/s22166210 |
Ejemplares similares
-
Semantic Point Cloud Segmentation Using Fast Deep Neural Network and DCRF †
por: Rao, Yunbo, et al.
Publicado: (2021) -
Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion
por: Du, Jing, et al.
Publicado: (2021) -
Road Environment Semantic Segmentation with Deep Learning from MLS Point Cloud Data
por: Balado, Jesús, et al.
Publicado: (2019) -
Semantic Segmentation of Natural Materials on a Point Cloud Using Spatial and Multispectral Features
por: Jurado, J. M., et al.
Publicado: (2020) -
Deep Segmentation of Point Clouds of Wheat
por: Ghahremani, Morteza, et al.
Publicado: (2021)