Cargando…
In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge(2)Sb(2)Te(5)
The reliability of Ge–Sb–Te phase-change memory (PCM) devices has been limited by failure due to void formation and this still remains one of the critical issues affecting their use in storage-class memory applications. To directly observe the void formation processes in real-time, we implemented in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418481/ https://www.ncbi.nlm.nih.gov/pubmed/36132805 http://dx.doi.org/10.1039/d0na00223b |
Sumario: | The reliability of Ge–Sb–Te phase-change memory (PCM) devices has been limited by failure due to void formation and this still remains one of the critical issues affecting their use in storage-class memory applications. To directly observe the void formation processes in real-time, we implemented in situ switching of PCM devices by applying set and reset voltage pulses to a Ge(2)Sb(2)Te(5) (GST) cell inside a transmission electron microscope (TEM). The in situ TEM observations directly show that a void nucleates preferentially near the TiN bottom electrode in the GST cell, where the temperature is the highest. The nucleated void grows gradually until it reaches a certain size while migrating slowly toward the positively biased electrode. The fully grown void then continues migrating toward the positively biased electrode in subsequent set pulses. The observed polarity-dependent void migration can be explained by the field-induced redistribution of the constituent elements, especially by the electromigration of under-coordinated Te(−) ions which have vacancies around them. When the reset pulse with the same voltage polarity is applied, the voids exhibit a slight volume shrinkage but are not completely eliminated, resulting in a reset-stuck failure. The present in situ TEM observations revealing the nucleation, growth, and polarity-dependent migration of voids will contribute to the fundamental understanding of the failure by void formation in nanoscale GST-based PCM devices and help improving the design of reliable PCM devices. |
---|