Cargando…
Anisotropic properties of pipe-GaN distributed Bragg reflectors
We report here a simple and robust process to convert periodic Si-doped GaN/undoped-GaN epitaxial layers into a porous-GaN/u-GaN distributed Bragg reflector (DBR) structure and demonstrate its material properties in a high-reflectance epitaxial reflector. Directional pipe-GaN layers with anisotropic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419737/ https://www.ncbi.nlm.nih.gov/pubmed/36132299 http://dx.doi.org/10.1039/c9na00743a |
Sumario: | We report here a simple and robust process to convert periodic Si-doped GaN/undoped-GaN epitaxial layers into a porous-GaN/u-GaN distributed Bragg reflector (DBR) structure and demonstrate its material properties in a high-reflectance epitaxial reflector. Directional pipe-GaN layers with anisotropic optical properties were formed from n(+)-GaN : Si layers in a stacked structure through a lateral and doping-selective electrochemical etching process. Central wavelengths of the polarized reflectance spectra were measured to be 473 nm and 457 nm for the pipe-GaN reflector when the direction of the linear polarizer was along and perpendicular to the pipe-GaN structure. The DBR reflector with directional pipe-GaN layers has the potential for a high efficiency polarized light source and vertical cavity surface emitting laser applications. |
---|