Cargando…
RBFNN-Enabled Adaptive Parameters Identification for Robot Servo System Based on Improved Sliding Mode Observer
Effective and accurate parameter identification, especially the identification of load torque, is one of the key factors to improve the control performance of the robot servo system. Sliding mode observer (SMO) has always been a common method for identifying load torque due to its advantages of simp...
Autores principales: | Li, Ye, Wang, Dazhi, Du, Mingtian, Zhou, Shuai, Cao, Shuo, Li, Yanming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423981/ https://www.ncbi.nlm.nih.gov/pubmed/36045969 http://dx.doi.org/10.1155/2022/8151132 |
Ejemplares similares
-
Intelligent Parameter Identification for Robot Servo Controller Based on Improved Integration Method
por: Li, Ye, et al.
Publicado: (2021) -
RBFNN-Based Singularity-Free Terminal Sliding Mode Control for Uncertain Quadrotor UAVs
por: Tao, Meiling, et al.
Publicado: (2021) -
Fault Identification in Electric Servo Actuators of Robot Manipulators Described by Nonstationary Nonlinear Dynamic Models Using Sliding Mode Observers
por: Zuev, Alexander, et al.
Publicado: (2022) -
Laser Gyro Temperature Compensation Using Modified RBFNN
por: Ding, Jicheng, et al.
Publicado: (2014) -
Measurement of the mass-flow-rate characterization parameters of high-pressure pneumatic servo slide valves
por: Zhang, Dijia, et al.
Publicado: (2022)