Cargando…
Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye
Sickle cell disease (SCD) exists on a phenotypic spectrum with variable genetic expressivity, making it difficult to assess an individual patient's risk of complications at any particular point in time. Current and emerging SCD treatments, including CRISPR-based gene editing, result in a variab...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424027/ https://www.ncbi.nlm.nih.gov/pubmed/36046774 http://dx.doi.org/10.1155/2022/6079631 |
_version_ | 1784778149377081344 |
---|---|
author | Pinhas, Alexander Zhou, Davis B. Otero-Marquez, Oscar Castanos Toral, Maria V. Migacz, Justin V. Glassberg, Jeffrey Rosen, Richard B. Chui, Toco Y. P. |
author_facet | Pinhas, Alexander Zhou, Davis B. Otero-Marquez, Oscar Castanos Toral, Maria V. Migacz, Justin V. Glassberg, Jeffrey Rosen, Richard B. Chui, Toco Y. P. |
author_sort | Pinhas, Alexander |
collection | PubMed |
description | Sickle cell disease (SCD) exists on a phenotypic spectrum with variable genetic expressivity, making it difficult to assess an individual patient's risk of complications at any particular point in time. Current and emerging SCD treatments, including CRISPR-based gene editing, result in a variable proportion of affected red blood cells (RBCs) still vulnerable to sickling. Clinical serological indicators of disease such as hemoglobin, indirect bilirubin, and reticulocyte count and clinical metrics including number of emergency department visits and hospitalizations over time often fall short in their ability to objectively quantify ischemic disease activity and efficacy of treatments. Clearly, better clinical biomarkers are needed. The rapidly developing field of oculomics leverages the transparent nature of the ocular tissue to directly study the retinal microvasculature in order to characterize the status of systemic diseases. In this case report, we demonstrate the ability of optical coherence tomography angiography (OCT-A) to detect and measure micro-occlusive events within the retinal capillary bed before and after RBC exchange transfusion and following CRISPR-based gene editing, as an indicator of systemic ischemic disease activity and measure of treatment efficacy. The implications of these findings are discussed. |
format | Online Article Text |
id | pubmed-9424027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-94240272022-08-30 Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye Pinhas, Alexander Zhou, Davis B. Otero-Marquez, Oscar Castanos Toral, Maria V. Migacz, Justin V. Glassberg, Jeffrey Rosen, Richard B. Chui, Toco Y. P. Case Rep Hematol Case Report Sickle cell disease (SCD) exists on a phenotypic spectrum with variable genetic expressivity, making it difficult to assess an individual patient's risk of complications at any particular point in time. Current and emerging SCD treatments, including CRISPR-based gene editing, result in a variable proportion of affected red blood cells (RBCs) still vulnerable to sickling. Clinical serological indicators of disease such as hemoglobin, indirect bilirubin, and reticulocyte count and clinical metrics including number of emergency department visits and hospitalizations over time often fall short in their ability to objectively quantify ischemic disease activity and efficacy of treatments. Clearly, better clinical biomarkers are needed. The rapidly developing field of oculomics leverages the transparent nature of the ocular tissue to directly study the retinal microvasculature in order to characterize the status of systemic diseases. In this case report, we demonstrate the ability of optical coherence tomography angiography (OCT-A) to detect and measure micro-occlusive events within the retinal capillary bed before and after RBC exchange transfusion and following CRISPR-based gene editing, as an indicator of systemic ischemic disease activity and measure of treatment efficacy. The implications of these findings are discussed. Hindawi 2022-08-22 /pmc/articles/PMC9424027/ /pubmed/36046774 http://dx.doi.org/10.1155/2022/6079631 Text en Copyright © 2022 Alexander Pinhas et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Case Report Pinhas, Alexander Zhou, Davis B. Otero-Marquez, Oscar Castanos Toral, Maria V. Migacz, Justin V. Glassberg, Jeffrey Rosen, Richard B. Chui, Toco Y. P. Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye |
title | Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye |
title_full | Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye |
title_fullStr | Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye |
title_full_unstemmed | Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye |
title_short | Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye |
title_sort | efficacy of crispr-based gene editing in a sickle cell disease patient as measured through the eye |
topic | Case Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424027/ https://www.ncbi.nlm.nih.gov/pubmed/36046774 http://dx.doi.org/10.1155/2022/6079631 |
work_keys_str_mv | AT pinhasalexander efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye AT zhoudavisb efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye AT oteromarquezoscar efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye AT castanostoralmariav efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye AT migaczjustinv efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye AT glassbergjeffrey efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye AT rosenrichardb efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye AT chuitocoyp efficacyofcrisprbasedgeneeditinginasicklecelldiseasepatientasmeasuredthroughtheeye |