Cargando…

Elafin Reverses Intestinal Fibrosis by Inhibiting Cathepsin S-Mediated Protease-Activated Receptor 2

BACKGROUND & AIMS: More than half of Crohn’s disease patients develop intestinal fibrosis-induced intestinal strictures. Elafin is a human protease inhibitor that is down-regulated in the stricturing intestine of Crohn’s disease patients. We investigated the efficacy of elafin in reversing intes...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Ying, Fontenot, Lindsey, Chupina Estrada, Andrea, Nelson, Becca, Wang, Jiani, Shih, David Q., Ho, Wendy, Mattai, S. Anjani, Rieder, Florian, Jensen, Dane D., Bunnett, Nigel W., Koon, Hon Wai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9425040/
https://www.ncbi.nlm.nih.gov/pubmed/35840034
http://dx.doi.org/10.1016/j.jcmgh.2022.06.011
Descripción
Sumario:BACKGROUND & AIMS: More than half of Crohn’s disease patients develop intestinal fibrosis-induced intestinal strictures. Elafin is a human protease inhibitor that is down-regulated in the stricturing intestine of Crohn’s disease patients. We investigated the efficacy of elafin in reversing intestinal fibrosis and elucidated its mechanism of action. METHODS: We developed a new method to mimic a stricturing Crohn’s disease environment and induce fibrogenesis using stricturing Crohn’s disease patient-derived serum exosomes to condition fresh human intestinal tissues and primary stricturing Crohn’s disease patient-derived intestinal fibroblasts. Three mouse models of intestinal fibrosis, including SAMP1/YitFc mice, Salmonella-infected mice, and trinitrobenzene sulfonic acid–treated mice, were also studied. Elafin-Eudragit FS30D formulation and elafin-overexpressing construct and lentivirus were used. RESULTS: Elafin reversed collagen synthesis in human intestinal tissues and fibroblasts pretreated with Crohn’s disease patient-derived serum exosomes. Proteome arrays identified cathepsin S as a novel fibroblast-derived pro-fibrogenic protease. Elafin directly suppressed cathepsin S activity to inhibit protease-activated receptor 2 activity and Zinc finger E-box-binding homeobox 1 expression, leading to reduced collagen expression in intestinal fibroblasts. Elafin overexpression reversed ileal fibrosis in SAMP1/YitFc mice, cecal fibrosis in Salmonella-infected mice, and colonic fibrosis in trinitrobenzene sulfonic acid–treated mice. Cathepsin S, protease-activated receptor 2 agonist, and zinc finger E-box-binding homeobox 1 overexpression abolished the anti-fibrogenic effect of elafin in fibroblasts and all 3 mouse models of intestinal fibrosis. Oral elafin-Eudragit FS30D treatment abolished colonic fibrosis in trinitrobenzene sulfonic acid–treated mice. CONCLUSIONS: Elafin suppresses collagen synthesis in intestinal fibroblasts via cathepsin S-dependent protease-activated receptor 2 inhibition and decreases zinc finger E-box-binding homeobox 1 expression. The reduced collagen synthesis leads to the reversal of intestinal fibrosis. Thus, modified elafin may be a therapeutic approach for intestinal fibrosis.