Cargando…
The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication
The protein kinase Akt broadly impacts many cellular processes, including mRNA translation, metabolism, apoptosis, and stress responses. Inhibition of phosphatidylinositol 3-kinase (PI3K), a lipid kinase pivotal to Akt activation, triggers various herpesviruses to reactivate from latency. Hence, dec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426471/ https://www.ncbi.nlm.nih.gov/pubmed/35946797 http://dx.doi.org/10.1128/mbio.01042-22 |
_version_ | 1784778687371018240 |
---|---|
author | Zhang, Hongbo Domma, Anthony J. Goodrum, Felicia D. Moorman, Nathaniel J. Kamil, Jeremy P. |
author_facet | Zhang, Hongbo Domma, Anthony J. Goodrum, Felicia D. Moorman, Nathaniel J. Kamil, Jeremy P. |
author_sort | Zhang, Hongbo |
collection | PubMed |
description | The protein kinase Akt broadly impacts many cellular processes, including mRNA translation, metabolism, apoptosis, and stress responses. Inhibition of phosphatidylinositol 3-kinase (PI3K), a lipid kinase pivotal to Akt activation, triggers various herpesviruses to reactivate from latency. Hence, decreased Akt activity may promote lytic replication. Here, we show that Akt accumulates in an inactive form during human cytomegalovirus (HCMV) infection of permissive fibroblasts, as indicated by hypophosphorylation of sites that activate Akt, decreased phosphorylation of PRAS40, and pronounced nuclear localization of FoxO3a, a substrate that remains cytoplasmic when Akt is active. HCMV strongly activates mTORC1 during lytic infection, suggesting a potential mechanism for Akt inactivation, since mTORC1 negatively regulates PI3K. However, we were surprised to observe that constitutive Akt activity, provided by expression of Akt fused to a myristoylation signal (myr-Akt), caused a 1-log decrease in viral replication, accompanied by defects in viral DNA synthesis and late gene expression. These results indicated that Akt inactivation is required for efficient viral replication, prompting us to address which Akt substrates underpin this requirement. Interestingly, we found that short interfering RNA knockdown of FoxO3a, but not FoxO1, phenocopied the defects caused by myr-Akt, corroborating a role for FoxO3a. Accordingly, a chimeric FoxO3a-estrogen receptor fusion protein, in which nuclear localization is regulated by 4-hydroxytamoxifen instead of Akt, reversed the replication defects caused by myr-Akt. Collectively, our results reveal a role for FoxO transcription factors in HCMV lytic replication and argue that this single class of Akt substrates underpins the requirement for Akt inactivation during productive infection. |
format | Online Article Text |
id | pubmed-9426471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-94264712022-08-31 The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication Zhang, Hongbo Domma, Anthony J. Goodrum, Felicia D. Moorman, Nathaniel J. Kamil, Jeremy P. mBio Research Article The protein kinase Akt broadly impacts many cellular processes, including mRNA translation, metabolism, apoptosis, and stress responses. Inhibition of phosphatidylinositol 3-kinase (PI3K), a lipid kinase pivotal to Akt activation, triggers various herpesviruses to reactivate from latency. Hence, decreased Akt activity may promote lytic replication. Here, we show that Akt accumulates in an inactive form during human cytomegalovirus (HCMV) infection of permissive fibroblasts, as indicated by hypophosphorylation of sites that activate Akt, decreased phosphorylation of PRAS40, and pronounced nuclear localization of FoxO3a, a substrate that remains cytoplasmic when Akt is active. HCMV strongly activates mTORC1 during lytic infection, suggesting a potential mechanism for Akt inactivation, since mTORC1 negatively regulates PI3K. However, we were surprised to observe that constitutive Akt activity, provided by expression of Akt fused to a myristoylation signal (myr-Akt), caused a 1-log decrease in viral replication, accompanied by defects in viral DNA synthesis and late gene expression. These results indicated that Akt inactivation is required for efficient viral replication, prompting us to address which Akt substrates underpin this requirement. Interestingly, we found that short interfering RNA knockdown of FoxO3a, but not FoxO1, phenocopied the defects caused by myr-Akt, corroborating a role for FoxO3a. Accordingly, a chimeric FoxO3a-estrogen receptor fusion protein, in which nuclear localization is regulated by 4-hydroxytamoxifen instead of Akt, reversed the replication defects caused by myr-Akt. Collectively, our results reveal a role for FoxO transcription factors in HCMV lytic replication and argue that this single class of Akt substrates underpins the requirement for Akt inactivation during productive infection. American Society for Microbiology 2022-08-10 /pmc/articles/PMC9426471/ /pubmed/35946797 http://dx.doi.org/10.1128/mbio.01042-22 Text en Copyright © 2022 Zhang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Zhang, Hongbo Domma, Anthony J. Goodrum, Felicia D. Moorman, Nathaniel J. Kamil, Jeremy P. The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication |
title | The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication |
title_full | The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication |
title_fullStr | The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication |
title_full_unstemmed | The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication |
title_short | The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication |
title_sort | akt forkhead box o transcription factor axis regulates human cytomegalovirus replication |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426471/ https://www.ncbi.nlm.nih.gov/pubmed/35946797 http://dx.doi.org/10.1128/mbio.01042-22 |
work_keys_str_mv | AT zhanghongbo theaktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT dommaanthonyj theaktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT goodrumfeliciad theaktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT moormannathanielj theaktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT kamiljeremyp theaktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT zhanghongbo aktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT dommaanthonyj aktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT goodrumfeliciad aktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT moormannathanielj aktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication AT kamiljeremyp aktforkheadboxotranscriptionfactoraxisregulateshumancytomegalovirusreplication |