Cargando…
Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations
A general method to infer both positive and purifying selection during the real-time evolution of hypermutator pathogens would be broadly useful. To this end, we introduce a Simple Test to Infer Mode of Selection (STIMS) from metagenomic time series of evolving microbial populations. We test STIMS o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426924/ https://www.ncbi.nlm.nih.gov/pubmed/35981004 http://dx.doi.org/10.1371/journal.pgen.1010324 |
_version_ | 1784778787827744768 |
---|---|
author | Maddamsetti, Rohan Grant, Nkrumah A. |
author_facet | Maddamsetti, Rohan Grant, Nkrumah A. |
author_sort | Maddamsetti, Rohan |
collection | PubMed |
description | A general method to infer both positive and purifying selection during the real-time evolution of hypermutator pathogens would be broadly useful. To this end, we introduce a Simple Test to Infer Mode of Selection (STIMS) from metagenomic time series of evolving microbial populations. We test STIMS on metagenomic data generated by simulations of bacterial evolution, and on metagenomic data spanning 62,750 generations of Lenski’s long-term evolution experiment with Escherichia coli (LTEE). This benchmarking shows that STIMS detects positive selection in both nonmutator and hypermutator populations, and purifying selection in hypermutator populations. Using STIMS, we find strong evidence of ongoing positive selection on key regulators of the E. coli gene regulatory network, even in some hypermutator populations. STIMS also detects positive selection on regulatory genes in hypermutator populations of Pseudomonas aeruginosa that adapted to subinhibitory concentrations of colistin–an antibiotic of last resort–for just twenty-six days of laboratory evolution. Our results show that the fine-tuning of gene regulatory networks is a general mechanism for rapid and ongoing adaptation. The simplicity of STIMS, together with its intuitive visual interpretation, make it a useful test for positive and purifying selection in metagenomic data sets that track microbial evolution in real-time. |
format | Online Article Text |
id | pubmed-9426924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94269242022-08-31 Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations Maddamsetti, Rohan Grant, Nkrumah A. PLoS Genet Research Article A general method to infer both positive and purifying selection during the real-time evolution of hypermutator pathogens would be broadly useful. To this end, we introduce a Simple Test to Infer Mode of Selection (STIMS) from metagenomic time series of evolving microbial populations. We test STIMS on metagenomic data generated by simulations of bacterial evolution, and on metagenomic data spanning 62,750 generations of Lenski’s long-term evolution experiment with Escherichia coli (LTEE). This benchmarking shows that STIMS detects positive selection in both nonmutator and hypermutator populations, and purifying selection in hypermutator populations. Using STIMS, we find strong evidence of ongoing positive selection on key regulators of the E. coli gene regulatory network, even in some hypermutator populations. STIMS also detects positive selection on regulatory genes in hypermutator populations of Pseudomonas aeruginosa that adapted to subinhibitory concentrations of colistin–an antibiotic of last resort–for just twenty-six days of laboratory evolution. Our results show that the fine-tuning of gene regulatory networks is a general mechanism for rapid and ongoing adaptation. The simplicity of STIMS, together with its intuitive visual interpretation, make it a useful test for positive and purifying selection in metagenomic data sets that track microbial evolution in real-time. Public Library of Science 2022-08-18 /pmc/articles/PMC9426924/ /pubmed/35981004 http://dx.doi.org/10.1371/journal.pgen.1010324 Text en © 2022 Maddamsetti, Grant https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Maddamsetti, Rohan Grant, Nkrumah A. Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations |
title | Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations |
title_full | Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations |
title_fullStr | Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations |
title_full_unstemmed | Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations |
title_short | Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations |
title_sort | discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426924/ https://www.ncbi.nlm.nih.gov/pubmed/35981004 http://dx.doi.org/10.1371/journal.pgen.1010324 |
work_keys_str_mv | AT maddamsettirohan discoveryofpositiveandpurifyingselectioninmetagenomictimeseriesofhypermutatormicrobialpopulations AT grantnkrumaha discoveryofpositiveandpurifyingselectioninmetagenomictimeseriesofhypermutatormicrobialpopulations |