Cargando…

Metabolic management of microenvironment acidity in glioblastoma

Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the numb...

Descripción completa

Detalles Bibliográficos
Autores principales: Seyfried, Thomas N., Arismendi-Morillo, Gabriel, Zuccoli, Giulio, Lee, Derek C., Duraj, Tomas, Elsakka, Ahmed M., Maroon, Joseph C., Mukherjee, Purna, Ta, Linh, Shelton, Laura, D'Agostino, Dominic, Kiebish, Michael, Chinopoulos, Christos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428719/
https://www.ncbi.nlm.nih.gov/pubmed/36059707
http://dx.doi.org/10.3389/fonc.2022.968351
_version_ 1784779183017164800
author Seyfried, Thomas N.
Arismendi-Morillo, Gabriel
Zuccoli, Giulio
Lee, Derek C.
Duraj, Tomas
Elsakka, Ahmed M.
Maroon, Joseph C.
Mukherjee, Purna
Ta, Linh
Shelton, Laura
D'Agostino, Dominic
Kiebish, Michael
Chinopoulos, Christos
author_facet Seyfried, Thomas N.
Arismendi-Morillo, Gabriel
Zuccoli, Giulio
Lee, Derek C.
Duraj, Tomas
Elsakka, Ahmed M.
Maroon, Joseph C.
Mukherjee, Purna
Ta, Linh
Shelton, Laura
D'Agostino, Dominic
Kiebish, Michael
Chinopoulos, Christos
author_sort Seyfried, Thomas N.
collection PubMed
description Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
format Online
Article
Text
id pubmed-9428719
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-94287192022-09-01 Metabolic management of microenvironment acidity in glioblastoma Seyfried, Thomas N. Arismendi-Morillo, Gabriel Zuccoli, Giulio Lee, Derek C. Duraj, Tomas Elsakka, Ahmed M. Maroon, Joseph C. Mukherjee, Purna Ta, Linh Shelton, Laura D'Agostino, Dominic Kiebish, Michael Chinopoulos, Christos Front Oncol Oncology Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells. Frontiers Media S.A. 2022-08-17 /pmc/articles/PMC9428719/ /pubmed/36059707 http://dx.doi.org/10.3389/fonc.2022.968351 Text en Copyright © 2022 Seyfried, Arismendi-Morillo, Zuccoli, Lee, Duraj, Elsakka, Maroon, Mukherjee, Ta, Shelton, D’Agostino, Kiebish and Chinopoulos https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Seyfried, Thomas N.
Arismendi-Morillo, Gabriel
Zuccoli, Giulio
Lee, Derek C.
Duraj, Tomas
Elsakka, Ahmed M.
Maroon, Joseph C.
Mukherjee, Purna
Ta, Linh
Shelton, Laura
D'Agostino, Dominic
Kiebish, Michael
Chinopoulos, Christos
Metabolic management of microenvironment acidity in glioblastoma
title Metabolic management of microenvironment acidity in glioblastoma
title_full Metabolic management of microenvironment acidity in glioblastoma
title_fullStr Metabolic management of microenvironment acidity in glioblastoma
title_full_unstemmed Metabolic management of microenvironment acidity in glioblastoma
title_short Metabolic management of microenvironment acidity in glioblastoma
title_sort metabolic management of microenvironment acidity in glioblastoma
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428719/
https://www.ncbi.nlm.nih.gov/pubmed/36059707
http://dx.doi.org/10.3389/fonc.2022.968351
work_keys_str_mv AT seyfriedthomasn metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT arismendimorillogabriel metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT zuccoligiulio metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT leederekc metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT durajtomas metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT elsakkaahmedm metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT maroonjosephc metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT mukherjeepurna metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT talinh metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT sheltonlaura metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT dagostinodominic metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT kiebishmichael metabolicmanagementofmicroenvironmentacidityinglioblastoma
AT chinopouloschristos metabolicmanagementofmicroenvironmentacidityinglioblastoma