Cargando…
Highly Sensitive Temperature Sensor Based on Coupled-Beam AlN-on-Si MEMS Resonators Operating in Out-of-Plane Flexural Vibration Modes
This paper reports a type of highly sensitive temperature sensor utilizing AlN-on-Si resonators with coupled-beam structures of double- and triple-ended-tuning-fork (D/TETF). For both resonators, the out-of-plane flexural mode is adopted as it favors the effect of thermal mismatch between the compos...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9429980/ https://www.ncbi.nlm.nih.gov/pubmed/36082211 http://dx.doi.org/10.34133/2022/9865926 |
Sumario: | This paper reports a type of highly sensitive temperature sensor utilizing AlN-on-Si resonators with coupled-beam structures of double- and triple-ended-tuning-fork (D/TETF). For both resonators, the out-of-plane flexural mode is adopted as it favors the effect of thermal mismatch between the composite layers inherent to the AlN-on-Si structure and thus helps attain a large temperature coefficient of resonant frequency (TCF). The analytical model to calculate TCF values of D/TETF AlN-on-Si resonators is provided, which agrees well with the finite-element simulation and experimental results. The resonant temperature sensor is built by closing the loop of the AlN-on-Si resonator, a transimpedance amplifier, a low-pass filter, and a phase shifter to form an oscillator, the output frequency of which shifts proportionally to the ambient temperature. The measured sensitivities of the temperature sensors using D/TETF resonators are better than -1000 ppm/°C in the temperature range of 25°C~60°C, showing great potential to fulfill the on-chip temperature compensation scheme for cofabricated sensors. |
---|