Cargando…

Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets

Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Vértesy, Ábel, Eichmüller, Oliver L, Naas, Julia, Novatchkova, Maria, Esk, Christopher, Balmaña, Meritxell, Ladstaetter, Sabrina, Bock, Christoph, von Haeseler, Arndt, Knoblich, Juergen A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433936/
https://www.ncbi.nlm.nih.gov/pubmed/35919947
http://dx.doi.org/10.15252/embj.2022111118
_version_ 1784780745835806720
author Vértesy, Ábel
Eichmüller, Oliver L
Naas, Julia
Novatchkova, Maria
Esk, Christopher
Balmaña, Meritxell
Ladstaetter, Sabrina
Bock, Christoph
von Haeseler, Arndt
Knoblich, Juergen A
author_facet Vértesy, Ábel
Eichmüller, Oliver L
Naas, Julia
Novatchkova, Maria
Esk, Christopher
Balmaña, Meritxell
Ladstaetter, Sabrina
Bock, Christoph
von Haeseler, Arndt
Knoblich, Juergen A
author_sort Vértesy, Ábel
collection PubMed
description Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single‐cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data.
format Online
Article
Text
id pubmed-9433936
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94339362022-09-09 Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets Vértesy, Ábel Eichmüller, Oliver L Naas, Julia Novatchkova, Maria Esk, Christopher Balmaña, Meritxell Ladstaetter, Sabrina Bock, Christoph von Haeseler, Arndt Knoblich, Juergen A EMBO J Resource Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single‐cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data. John Wiley and Sons Inc. 2022-08-02 /pmc/articles/PMC9433936/ /pubmed/35919947 http://dx.doi.org/10.15252/embj.2022111118 Text en © 2022 The Authors. Published under the terms of the CC BY 4.0 license. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Resource
Vértesy, Ábel
Eichmüller, Oliver L
Naas, Julia
Novatchkova, Maria
Esk, Christopher
Balmaña, Meritxell
Ladstaetter, Sabrina
Bock, Christoph
von Haeseler, Arndt
Knoblich, Juergen A
Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
title Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
title_full Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
title_fullStr Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
title_full_unstemmed Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
title_short Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
title_sort gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433936/
https://www.ncbi.nlm.nih.gov/pubmed/35919947
http://dx.doi.org/10.15252/embj.2022111118
work_keys_str_mv AT vertesyabel gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT eichmulleroliverl gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT naasjulia gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT novatchkovamaria gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT eskchristopher gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT balmanameritxell gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT ladstaettersabrina gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT bockchristoph gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT vonhaeselerarndt gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets
AT knoblichjuergena gruffianalgorithmforcomputationalremovalofstressedcellsfrombrainorganoidtranscriptomicdatasets