Cargando…

Neutron crystallographic analysis of the nucleotide-binding domain of Hsp72 in complex with ADP

The 70 kDa heat-shock proteins (Hsp70s) are ATP-dependent molecular chaperones that contain an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain. Hsp70s bind to misfolded/unfolded proteins and thereby prevent their aggregation. The ATP hydrolysis reaction in the NB...

Descripción completa

Detalles Bibliográficos
Autores principales: Yokoyama, Takeshi, Fujii, Shiho, Ostermann, Andreas, Schrader, Tobias E., Nabeshima, Yuko, Mizuguchi, Mineyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438496/
https://www.ncbi.nlm.nih.gov/pubmed/36071806
http://dx.doi.org/10.1107/S2052252522006297
Descripción
Sumario:The 70 kDa heat-shock proteins (Hsp70s) are ATP-dependent molecular chaperones that contain an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain. Hsp70s bind to misfolded/unfolded proteins and thereby prevent their aggregation. The ATP hydrolysis reaction in the NBD plays a key role in allosteric control of the binding of substrate proteins. In the present study, the neutron crystal structure of the NBD of Hsp72, a heat-inducible Hsp70 family member, was solved in complex with ADP in order to study the structure–function relationship with a focus on hydrogens. ADP bound to Hsp72 was fully deprotonated, and the catalytically important residues, including Asp10, Asp199 and Asp206, are also deprotonated. Neutron analysis also enabled the characterization of the water clusters in the NBD. Enzymatic assays and X-ray crystallographic analysis revealed that the Y149A mutation exhibited a higher ATPase activity and caused disruption of the water cluster and incorporation of an additional magnesium ion. Tyr149 was suggested to contribute to the low intrinsic ATPase activity and to stabilize the water cluster. Collectively, these structural studies will help to elucidate the molecular basis of the function of Hsp72.