Cargando…
Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein
Misfolded glycosylphosphatidylinositol-anchored prion protein (PrP) is primarily degraded in lysosomes but is often rapidly removed from the cell surface before endocytosis in a preemptive manner. However, this mechanism is poorly understood. In this study, we discovered a disease-causing prion muta...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440079/ https://www.ncbi.nlm.nih.gov/pubmed/36041363 http://dx.doi.org/10.1016/j.redox.2022.102456 |
_version_ | 1784782234642808832 |
---|---|
author | Shin, Yejin Jo, Kang-Sug Shin, Minseok Lee, Duri Yeo, Hyejin Song, Youngsup Kang, Sang-Wook |
author_facet | Shin, Yejin Jo, Kang-Sug Shin, Minseok Lee, Duri Yeo, Hyejin Song, Youngsup Kang, Sang-Wook |
author_sort | Shin, Yejin |
collection | PubMed |
description | Misfolded glycosylphosphatidylinositol-anchored prion protein (PrP) is primarily degraded in lysosomes but is often rapidly removed from the cell surface before endocytosis in a preemptive manner. However, this mechanism is poorly understood. In this study, we discovered a disease-causing prion mutation (Q212P) that exceptionally promoted the extracellular release of PrP. Spatiotemporal analyses combined with genome editing identified the role of sheddase ADAM10 in Q212P shedding from the cell surface. ADAM10 was observed to catalytically interacts with Q212P but non-catalytically with wild-type PrP (wtPrP). This intrinsic difference in the interaction of ADAM10 between Q212P and wtPrP allowed Q212P to selectively access the sheddase activity of ADAM10 in a redox-sensitive manner. In addition, redox perturbation instigated the latent misfolding propensity of Q212P and disrupted the catalytic interaction between PrP and ADAM10, resulting in the accumulation of misfolded PrP on the cell surface. Upon recovery, active ADAM10 was able to reversibly release the surface Q212P. However, it might prove detrimental if unregulated resulting in unexpected proteotoxicity. This study provides a molecular basis of the mutant-selective shedding of PrP by demonstrating the catalytic interaction of ADAM10 with Q212P. |
format | Online Article Text |
id | pubmed-9440079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94400792022-09-04 Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein Shin, Yejin Jo, Kang-Sug Shin, Minseok Lee, Duri Yeo, Hyejin Song, Youngsup Kang, Sang-Wook Redox Biol Research Paper Misfolded glycosylphosphatidylinositol-anchored prion protein (PrP) is primarily degraded in lysosomes but is often rapidly removed from the cell surface before endocytosis in a preemptive manner. However, this mechanism is poorly understood. In this study, we discovered a disease-causing prion mutation (Q212P) that exceptionally promoted the extracellular release of PrP. Spatiotemporal analyses combined with genome editing identified the role of sheddase ADAM10 in Q212P shedding from the cell surface. ADAM10 was observed to catalytically interacts with Q212P but non-catalytically with wild-type PrP (wtPrP). This intrinsic difference in the interaction of ADAM10 between Q212P and wtPrP allowed Q212P to selectively access the sheddase activity of ADAM10 in a redox-sensitive manner. In addition, redox perturbation instigated the latent misfolding propensity of Q212P and disrupted the catalytic interaction between PrP and ADAM10, resulting in the accumulation of misfolded PrP on the cell surface. Upon recovery, active ADAM10 was able to reversibly release the surface Q212P. However, it might prove detrimental if unregulated resulting in unexpected proteotoxicity. This study provides a molecular basis of the mutant-selective shedding of PrP by demonstrating the catalytic interaction of ADAM10 with Q212P. Elsevier 2022-08-28 /pmc/articles/PMC9440079/ /pubmed/36041363 http://dx.doi.org/10.1016/j.redox.2022.102456 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Shin, Yejin Jo, Kang-Sug Shin, Minseok Lee, Duri Yeo, Hyejin Song, Youngsup Kang, Sang-Wook Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein |
title | Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein |
title_full | Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein |
title_fullStr | Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein |
title_full_unstemmed | Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein |
title_short | Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein |
title_sort | role of redox-sensitive catalytic interaction with adam10 in mutant-selective extracellular shedding of prion protein |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440079/ https://www.ncbi.nlm.nih.gov/pubmed/36041363 http://dx.doi.org/10.1016/j.redox.2022.102456 |
work_keys_str_mv | AT shinyejin roleofredoxsensitivecatalyticinteractionwithadam10inmutantselectiveextracellularsheddingofprionprotein AT jokangsug roleofredoxsensitivecatalyticinteractionwithadam10inmutantselectiveextracellularsheddingofprionprotein AT shinminseok roleofredoxsensitivecatalyticinteractionwithadam10inmutantselectiveextracellularsheddingofprionprotein AT leeduri roleofredoxsensitivecatalyticinteractionwithadam10inmutantselectiveextracellularsheddingofprionprotein AT yeohyejin roleofredoxsensitivecatalyticinteractionwithadam10inmutantselectiveextracellularsheddingofprionprotein AT songyoungsup roleofredoxsensitivecatalyticinteractionwithadam10inmutantselectiveextracellularsheddingofprionprotein AT kangsangwook roleofredoxsensitivecatalyticinteractionwithadam10inmutantselectiveextracellularsheddingofprionprotein |