Cargando…
USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K
Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto‐oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjus...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441007/ https://www.ncbi.nlm.nih.gov/pubmed/35364627 http://dx.doi.org/10.1002/1878-0261.13217 |
_version_ | 1784782483098697728 |
---|---|
author | Prieto‐Garcia, Cristian Hartmann, Oliver Reissland, Michaela Braun, Fabian Bozkurt, Süleyman Pahor, Nikolett Fuss, Carmina Schirbel, Andreas Schülein‐Völk, Christina Buchberger, Alexander Calzado Canale, Marco A. Rosenfeldt, Mathias Dikic, Ivan Münch, Christian Diefenbacher, Markus E. |
author_facet | Prieto‐Garcia, Cristian Hartmann, Oliver Reissland, Michaela Braun, Fabian Bozkurt, Süleyman Pahor, Nikolett Fuss, Carmina Schirbel, Andreas Schülein‐Völk, Christina Buchberger, Alexander Calzado Canale, Marco A. Rosenfeldt, Mathias Dikic, Ivan Münch, Christian Diefenbacher, Markus E. |
author_sort | Prieto‐Garcia, Cristian |
collection | PubMed |
description | Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto‐oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl‐terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto‐oncogenes such as c‐JUN, c‐MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed‐forward loop, driven by increased amounts of oncogenic transcription factors such as c‐MYC and c‐JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small‐molecule inhibitor resets the proteome of transformed cells towards a ‘premalignant’ state, and its inhibition synergizes with clinically established compounds used to target EGFR(L858R)‐, BRAF(V600E)‐ or PI3K(H1047R)‐driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early‐stage lung tumours, and the observed synergism with current standard‐of‐care inhibitors holds the potential for improved targeting of established tumours. |
format | Online Article Text |
id | pubmed-9441007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94410072022-09-09 USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K Prieto‐Garcia, Cristian Hartmann, Oliver Reissland, Michaela Braun, Fabian Bozkurt, Süleyman Pahor, Nikolett Fuss, Carmina Schirbel, Andreas Schülein‐Völk, Christina Buchberger, Alexander Calzado Canale, Marco A. Rosenfeldt, Mathias Dikic, Ivan Münch, Christian Diefenbacher, Markus E. Mol Oncol Research Articles Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto‐oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl‐terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto‐oncogenes such as c‐JUN, c‐MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed‐forward loop, driven by increased amounts of oncogenic transcription factors such as c‐MYC and c‐JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small‐molecule inhibitor resets the proteome of transformed cells towards a ‘premalignant’ state, and its inhibition synergizes with clinically established compounds used to target EGFR(L858R)‐, BRAF(V600E)‐ or PI3K(H1047R)‐driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early‐stage lung tumours, and the observed synergism with current standard‐of‐care inhibitors holds the potential for improved targeting of established tumours. John Wiley and Sons Inc. 2022-04-30 2022-09 /pmc/articles/PMC9441007/ /pubmed/35364627 http://dx.doi.org/10.1002/1878-0261.13217 Text en © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Prieto‐Garcia, Cristian Hartmann, Oliver Reissland, Michaela Braun, Fabian Bozkurt, Süleyman Pahor, Nikolett Fuss, Carmina Schirbel, Andreas Schülein‐Völk, Christina Buchberger, Alexander Calzado Canale, Marco A. Rosenfeldt, Mathias Dikic, Ivan Münch, Christian Diefenbacher, Markus E. USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K |
title | USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K |
title_full | USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K |
title_fullStr | USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K |
title_full_unstemmed | USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K |
title_short | USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K |
title_sort | usp28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant egfr, braf and pi3k |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441007/ https://www.ncbi.nlm.nih.gov/pubmed/35364627 http://dx.doi.org/10.1002/1878-0261.13217 |
work_keys_str_mv | AT prietogarciacristian usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT hartmannoliver usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT reisslandmichaela usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT braunfabian usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT bozkurtsuleyman usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT pahornikolett usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT fusscarmina usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT schirbelandreas usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT schuleinvolkchristina usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT buchbergeralexander usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT calzadocanalemarcoa usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT rosenfeldtmathias usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT dikicivan usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT munchchristian usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k AT diefenbachermarkuse usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k |