Cargando…

USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K

Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto‐oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjus...

Descripción completa

Detalles Bibliográficos
Autores principales: Prieto‐Garcia, Cristian, Hartmann, Oliver, Reissland, Michaela, Braun, Fabian, Bozkurt, Süleyman, Pahor, Nikolett, Fuss, Carmina, Schirbel, Andreas, Schülein‐Völk, Christina, Buchberger, Alexander, Calzado Canale, Marco A., Rosenfeldt, Mathias, Dikic, Ivan, Münch, Christian, Diefenbacher, Markus E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441007/
https://www.ncbi.nlm.nih.gov/pubmed/35364627
http://dx.doi.org/10.1002/1878-0261.13217
_version_ 1784782483098697728
author Prieto‐Garcia, Cristian
Hartmann, Oliver
Reissland, Michaela
Braun, Fabian
Bozkurt, Süleyman
Pahor, Nikolett
Fuss, Carmina
Schirbel, Andreas
Schülein‐Völk, Christina
Buchberger, Alexander
Calzado Canale, Marco A.
Rosenfeldt, Mathias
Dikic, Ivan
Münch, Christian
Diefenbacher, Markus E.
author_facet Prieto‐Garcia, Cristian
Hartmann, Oliver
Reissland, Michaela
Braun, Fabian
Bozkurt, Süleyman
Pahor, Nikolett
Fuss, Carmina
Schirbel, Andreas
Schülein‐Völk, Christina
Buchberger, Alexander
Calzado Canale, Marco A.
Rosenfeldt, Mathias
Dikic, Ivan
Münch, Christian
Diefenbacher, Markus E.
author_sort Prieto‐Garcia, Cristian
collection PubMed
description Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto‐oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl‐terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto‐oncogenes such as c‐JUN, c‐MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed‐forward loop, driven by increased amounts of oncogenic transcription factors such as c‐MYC and c‐JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small‐molecule inhibitor resets the proteome of transformed cells towards a ‘premalignant’ state, and its inhibition synergizes with clinically established compounds used to target EGFR(L858R)‐, BRAF(V600E)‐ or PI3K(H1047R)‐driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early‐stage lung tumours, and the observed synergism with current standard‐of‐care inhibitors holds the potential for improved targeting of established tumours.
format Online
Article
Text
id pubmed-9441007
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94410072022-09-09 USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K Prieto‐Garcia, Cristian Hartmann, Oliver Reissland, Michaela Braun, Fabian Bozkurt, Süleyman Pahor, Nikolett Fuss, Carmina Schirbel, Andreas Schülein‐Völk, Christina Buchberger, Alexander Calzado Canale, Marco A. Rosenfeldt, Mathias Dikic, Ivan Münch, Christian Diefenbacher, Markus E. Mol Oncol Research Articles Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto‐oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl‐terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto‐oncogenes such as c‐JUN, c‐MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed‐forward loop, driven by increased amounts of oncogenic transcription factors such as c‐MYC and c‐JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small‐molecule inhibitor resets the proteome of transformed cells towards a ‘premalignant’ state, and its inhibition synergizes with clinically established compounds used to target EGFR(L858R)‐, BRAF(V600E)‐ or PI3K(H1047R)‐driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early‐stage lung tumours, and the observed synergism with current standard‐of‐care inhibitors holds the potential for improved targeting of established tumours. John Wiley and Sons Inc. 2022-04-30 2022-09 /pmc/articles/PMC9441007/ /pubmed/35364627 http://dx.doi.org/10.1002/1878-0261.13217 Text en © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Prieto‐Garcia, Cristian
Hartmann, Oliver
Reissland, Michaela
Braun, Fabian
Bozkurt, Süleyman
Pahor, Nikolett
Fuss, Carmina
Schirbel, Andreas
Schülein‐Völk, Christina
Buchberger, Alexander
Calzado Canale, Marco A.
Rosenfeldt, Mathias
Dikic, Ivan
Münch, Christian
Diefenbacher, Markus E.
USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K
title USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K
title_full USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K
title_fullStr USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K
title_full_unstemmed USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K
title_short USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K
title_sort usp28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant egfr, braf and pi3k
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441007/
https://www.ncbi.nlm.nih.gov/pubmed/35364627
http://dx.doi.org/10.1002/1878-0261.13217
work_keys_str_mv AT prietogarciacristian usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT hartmannoliver usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT reisslandmichaela usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT braunfabian usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT bozkurtsuleyman usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT pahornikolett usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT fusscarmina usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT schirbelandreas usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT schuleinvolkchristina usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT buchbergeralexander usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT calzadocanalemarcoa usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT rosenfeldtmathias usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT dikicivan usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT munchchristian usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k
AT diefenbachermarkuse usp28enablesoncogenictransformationofrespiratorycellsanditsinhibitionpotentiatesmoleculartherapytargetingmutantegfrbrafandpi3k