Cargando…

LDLR, LRP1, and Megalin redundantly participate in the uptake of Clostridium novyi alpha-toxin

Clostridium novyi alpha-toxin (Tcnα) is a potent exotoxin that induces severe symptoms including gas gangrene, myositis, necrotic hepatitis, and sepsis. Tcnα binds to sulfated glycosaminoglycans (sGAG) for cell-surface attachment and utilizes low-density lipoprotein receptor (LDLR) for rapid entry....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yao, Li, Danyang, Li, Diyin, Chen, Aizhong, He, Liuqing, Luo, Jianhua, Tao, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445046/
https://www.ncbi.nlm.nih.gov/pubmed/36064583
http://dx.doi.org/10.1038/s42003-022-03873-0
Descripción
Sumario:Clostridium novyi alpha-toxin (Tcnα) is a potent exotoxin that induces severe symptoms including gas gangrene, myositis, necrotic hepatitis, and sepsis. Tcnα binds to sulfated glycosaminoglycans (sGAG) for cell-surface attachment and utilizes low-density lipoprotein receptor (LDLR) for rapid entry. However, it was also shown that Tcnα may use alternative entry receptors other than LDLR. Here, we define that LRP1 and Megalin can also facilitate the cellular entry of Tcnα by employing reconstitutive LDLR family proteins. LDLR, LRP1, and Megalin recognize Tcnα via their ligand-binding domains (also known as LDL receptor type A repeats). Notably, LDLR and LRP1 have contrasting expression levels in many different cells, thus the dominant entry receptor for Tcnα could be cell-type dependent. These findings together increase our knowledge of the Tcnα actions and further help to understand the pathogenesis of C. novyi infection-associated diseases.