Cargando…

11β-HSD1 participates in epileptogenesis and the associated cognitive impairment by inhibiting apoptosis in mice

BACKGROUND: Glucocorticoid signalling is closely related to both epilepsy and associated cognitive impairment, possibly through mechanisms involving neuronal apoptosis. As a critical enzyme for glucocorticoid action, the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in epileptogenesis and as...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xueying, Qiu, Wanhua, Deng, Lu, Lin, Jingjing, Huang, Wenting, Xu, Yuchen, Zhang, Mulan, Jones, Nigel C., Lin, Runxuan, Xu, Huiqin, Lin, Li, Li, Peijun, Wang, Xinshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446697/
https://www.ncbi.nlm.nih.gov/pubmed/36064418
http://dx.doi.org/10.1186/s12967-022-03618-x
Descripción
Sumario:BACKGROUND: Glucocorticoid signalling is closely related to both epilepsy and associated cognitive impairment, possibly through mechanisms involving neuronal apoptosis. As a critical enzyme for glucocorticoid action, the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in epileptogenesis and associated cognitive impairment has not previously been studied. METHODS: We first investigated the expression of 11β-HSD1 in the pentylenetetrazole (PTZ) kindling mouse model of epilepsy. We then observed the effect of overexpressing 11β-HSD1 on the excitability of primary cultured neurons in vitro using whole-cell patch clamp recordings. Further, we assessed the effects of adeno-associated virus (AAV)-induced hippocampal 11β-HSD1 knockdown in the PTZ model, conducting behavioural observations of seizures, assessment of spatial learning and memory using the Morris water maze, and biochemical and histopathological analyses. RESULTS: We found that 11β-HSD1 was primarily expressed in neurons but not astrocytes, and its expression was significantly (p < 0.05) increased in the hippocampus of PTZ epilepsy mice compared to sham controls. Whole-cell patch clamp recordings showed that overexpression of 11β-HSD1 significantly decreased the threshold voltage while increasing the frequency of action potential firing in cultured hippocampal neurons. Hippocampal knockdown of 11β-HSD1 significantly reduced the severity score of PTZ seizures and increased the latent period required to reach the fully kindled state compared to control knockdown. Knockdown of 11β-HSD1 also significantly mitigated the impairment of spatial learning and memory, attenuated hippocampal neuronal damage and increased the ratio of Bcl-2/Bax, while decreasing the expression of cleaved caspase-3. CONCLUSIONS: 11β-HSD1 participates in the pathogenesis of both epilepsy and the associated cognitive impairment by elevating neuronal excitability and contributing to apoptosis and subsequent hippocampal neuronal damage. Inhibition of 11β-HSD1, therefore, represents a promising strategy to treat epilepsy and cognitive comorbidity.