Cargando…

Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia

BACKGROUND: Biliary atresia (BA) is a childhood liver disease characterized by fibrous obstruction and obstruction of the extrahepatic biliary system and is one of the most common and serious biliary disorders in infants. Significant inflammation and fibrosis of the liver and biliary tract are the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yingxuan, Lu, Li, Tan, Kezhe, Li, Zhi, Guo, Ting, Wu, Yibo, Wu, Wei, Zheng, Lulu, Fan, Feilong, Mo, Jiayu, Gong, Zhenhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454303/
https://www.ncbi.nlm.nih.gov/pubmed/36090996
http://dx.doi.org/10.3389/fimmu.2022.875593
_version_ 1784785320802254848
author Ma, Yingxuan
Lu, Li
Tan, Kezhe
Li, Zhi
Guo, Ting
Wu, Yibo
Wu, Wei
Zheng, Lulu
Fan, Feilong
Mo, Jiayu
Gong, Zhenhua
author_facet Ma, Yingxuan
Lu, Li
Tan, Kezhe
Li, Zhi
Guo, Ting
Wu, Yibo
Wu, Wei
Zheng, Lulu
Fan, Feilong
Mo, Jiayu
Gong, Zhenhua
author_sort Ma, Yingxuan
collection PubMed
description BACKGROUND: Biliary atresia (BA) is a childhood liver disease characterized by fibrous obstruction and obstruction of the extrahepatic biliary system and is one of the most common and serious biliary disorders in infants. Significant inflammation and fibrosis of the liver and biliary tract are the most prominent features, regardless of the initial damage to the BA. Abnormalities in innate or adaptive immunity have been found in human patients and mouse models of BA. We previously reported that children with BA had abnormal lipid metabolism, including free serum carnitine. OBJECTIVE: To study gene and protein expression levels of the hepatic peroxisome proliferator-activated receptor-α (PPARα) signaling pathway and farnesoid X receptor (FXR) in BA and BA fibrosis, and assess their clinical values. METHODS: Low expression of PPARα and NR1H4 (FXR) in BA were validated in the Gene Expression Omnibus database. Functional differences were determined by gene set enrichment analysis based on of PPARα and NR1H4 expression. BA patients from GSE46960 were divided into two clusters by using consensus clustering according to PPARα, NR1H4, and SMAD3 expression levels, and immunoinfiltration analysis was performed. Finally, 58 cases treated in our hospital were used for experimental verification. (IHC: 10 Biliary atresia, 10 choledochal cysts; PCR: 10 Biliary atresia, 14 choledochal cysts; WB: 10 Biliary atresia, 4 choledochal cysts). RESULTS: Bioinformatics analysis showed that the expression of PPARα, CYP7A1 and NR1H4 (FXR) in the biliary atresia group was significantly lower than in the control group. More BA-specific pathways, including TGFβ signaling pathway, P53 signaling pathway, PI3K-AKT-mTOR signaling pathway, etc., are enriched in BA patients with low PPARα and NR1H4 expression. In addition, low NR1H4 expression is abundant in inflammatory responses, IL6/STAT3 signaling pathways, early estrogen responses, IL2 STAT5 signaling pathways, and TGFβ signaling pathways. The TGFβ signaling pathway was significant in both groups. According to the expression of PPARα, NR1H4 and SMAD3, a key node in TGFβ pathway, BA patients were divided into two clusters using consensus clustering. In cluster 2, SMAD3 expression was high, and PPARα and NR1H4 expression were low. In contrast to cluster 1, immune cell infiltration was higher in cluster 2, which was confirmed by immunohistochemistry. The mRNA and protein levels of PPARα and NR1H4 in BA patients were lower than in the control group by immunohistochemistry, Western blot analysis and real-time PCR. CONCLUSIONS: The downregulation of PPARα and NR1H4 (FXR) signaling pathway may be closely related to biliary atresia.
format Online
Article
Text
id pubmed-9454303
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-94543032022-09-09 Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia Ma, Yingxuan Lu, Li Tan, Kezhe Li, Zhi Guo, Ting Wu, Yibo Wu, Wei Zheng, Lulu Fan, Feilong Mo, Jiayu Gong, Zhenhua Front Immunol Immunology BACKGROUND: Biliary atresia (BA) is a childhood liver disease characterized by fibrous obstruction and obstruction of the extrahepatic biliary system and is one of the most common and serious biliary disorders in infants. Significant inflammation and fibrosis of the liver and biliary tract are the most prominent features, regardless of the initial damage to the BA. Abnormalities in innate or adaptive immunity have been found in human patients and mouse models of BA. We previously reported that children with BA had abnormal lipid metabolism, including free serum carnitine. OBJECTIVE: To study gene and protein expression levels of the hepatic peroxisome proliferator-activated receptor-α (PPARα) signaling pathway and farnesoid X receptor (FXR) in BA and BA fibrosis, and assess their clinical values. METHODS: Low expression of PPARα and NR1H4 (FXR) in BA were validated in the Gene Expression Omnibus database. Functional differences were determined by gene set enrichment analysis based on of PPARα and NR1H4 expression. BA patients from GSE46960 were divided into two clusters by using consensus clustering according to PPARα, NR1H4, and SMAD3 expression levels, and immunoinfiltration analysis was performed. Finally, 58 cases treated in our hospital were used for experimental verification. (IHC: 10 Biliary atresia, 10 choledochal cysts; PCR: 10 Biliary atresia, 14 choledochal cysts; WB: 10 Biliary atresia, 4 choledochal cysts). RESULTS: Bioinformatics analysis showed that the expression of PPARα, CYP7A1 and NR1H4 (FXR) in the biliary atresia group was significantly lower than in the control group. More BA-specific pathways, including TGFβ signaling pathway, P53 signaling pathway, PI3K-AKT-mTOR signaling pathway, etc., are enriched in BA patients with low PPARα and NR1H4 expression. In addition, low NR1H4 expression is abundant in inflammatory responses, IL6/STAT3 signaling pathways, early estrogen responses, IL2 STAT5 signaling pathways, and TGFβ signaling pathways. The TGFβ signaling pathway was significant in both groups. According to the expression of PPARα, NR1H4 and SMAD3, a key node in TGFβ pathway, BA patients were divided into two clusters using consensus clustering. In cluster 2, SMAD3 expression was high, and PPARα and NR1H4 expression were low. In contrast to cluster 1, immune cell infiltration was higher in cluster 2, which was confirmed by immunohistochemistry. The mRNA and protein levels of PPARα and NR1H4 in BA patients were lower than in the control group by immunohistochemistry, Western blot analysis and real-time PCR. CONCLUSIONS: The downregulation of PPARα and NR1H4 (FXR) signaling pathway may be closely related to biliary atresia. Frontiers Media S.A. 2022-08-25 /pmc/articles/PMC9454303/ /pubmed/36090996 http://dx.doi.org/10.3389/fimmu.2022.875593 Text en Copyright © 2022 Ma, Lu, Tan, Li, Guo, Wu, Wu, Zheng, Fan, Mo and Gong https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Ma, Yingxuan
Lu, Li
Tan, Kezhe
Li, Zhi
Guo, Ting
Wu, Yibo
Wu, Wei
Zheng, Lulu
Fan, Feilong
Mo, Jiayu
Gong, Zhenhua
Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia
title Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia
title_full Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia
title_fullStr Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia
title_full_unstemmed Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia
title_short Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia
title_sort reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor nr1h4/fxr may affect the hepatic immune microenvironment of biliary atresia
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454303/
https://www.ncbi.nlm.nih.gov/pubmed/36090996
http://dx.doi.org/10.3389/fimmu.2022.875593
work_keys_str_mv AT mayingxuan reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT luli reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT tankezhe reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT lizhi reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT guoting reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT wuyibo reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT wuwei reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT zhenglulu reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT fanfeilong reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT mojiayu reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia
AT gongzhenhua reducedperoxisomeproliferatoractivatedreceptoraandbileacidnuclearreceptornr1h4fxrmayaffectthehepaticimmunemicroenvironmentofbiliaryatresia