Cargando…
MicroRNA Let-7a, -7e and -133a Attenuate Hypoxia-Induced Atrial Fibrosis via Targeting Collagen Expression and the JNK Pathway in HL1 Cardiomyocytes
Fibrosis is a hallmark of atrial structural remodeling. The main aim of this study was to investigate the role of micro-ribonucleic acids (miRNAs) in the modulation of fibrotic molecular mechanisms in response to hypoxic conditions, which may mediate atrial fibrosis. Under a condition of hypoxia ind...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455749/ https://www.ncbi.nlm.nih.gov/pubmed/36077031 http://dx.doi.org/10.3390/ijms23179636 |
Sumario: | Fibrosis is a hallmark of atrial structural remodeling. The main aim of this study was to investigate the role of micro-ribonucleic acids (miRNAs) in the modulation of fibrotic molecular mechanisms in response to hypoxic conditions, which may mediate atrial fibrosis. Under a condition of hypoxia induced by a hypoxia chamber, miRNA arrays were used to identify the specific miRNAs associated with the modulation of fibrotic genes. Luciferase assay, real-time polymerase chain reaction, immunofluorescence and Western blotting were used to investigate the effects of miRNAs on the expressions of the fibrotic markers collagen I and III (COL1A, COL3A) and phosphorylation levels of the stress kinase c-Jun N-terminal kinase (JNK) pathway in a cultured HL-1 atrial cardiomyocytes cell line. COL1A and COL3A were found to be the direct regulatory targets of miR-let-7a, miR-let-7e and miR-133a in hypoxic atrial cardiac cells in vitro. The expressions of COL1A and COL3A were influenced by treatment with miRNA mimic and antagomir while hypoxia-induced collagen expression was inhibited by the delivery of miR-133a, miR-let-7a or miR-let-7e. The JNK pathway was critical in the pathogenesis of atrial fibrosis. The JNK inhibitor SP600125 increased miRNA expressions and repressed the fibrotic markers COL1A and COL3A. In conclusion, MiRNA let-7a, miR-let-7e and miR-133a play important roles in hypoxia-related atrial fibrosis by inhibiting collagen expression and post-transcriptional repression by the JNK pathway. These novel findings may lead to the development of new therapeutic strategies. |
---|