Cargando…
Mechanism of Inosine Monophosphate Degradation by Specific Spoilage Organism from Grass Carp in Fish Juice System
Microbial growth strongly affects the quality and flavor of fish and fish products. This study aimed to explore the role and function of grass carp-borne microorganisms in the degradation of inosine monophosphate (IMP) related compounds in a fish juice system during chill storage (4 °C. Prokaryotic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455830/ https://www.ncbi.nlm.nih.gov/pubmed/36076856 http://dx.doi.org/10.3390/foods11172672 |
Sumario: | Microbial growth strongly affects the quality and flavor of fish and fish products. This study aimed to explore the role and function of grass carp-borne microorganisms in the degradation of inosine monophosphate (IMP) related compounds in a fish juice system during chill storage (4 °C. Prokaryotic transcriptomic analysis was used to explore the microbial contribution to metabolic pathways and related enzymes. The degree of microbial contribution was verified by the activity of enzymes and metabolite content. Collectively, there were multiple IMP relative product degradation pathways. A. rivipollensis degraded IMP by producing 5′-nucleotidase (5′-NT) while S. putrefaciens degraded IMP mainly by alkaline phosphatase (ALP). Hypoxanthine (Hx) was degraded to uric acid (Ua) induced by P. putida and S. putrefaciens mainly with producing xanthine oxidase (XOD), while A. rivipollensis almost could not produce XOD. This work can used as a guide and provide basic knowledge for the quality and flavor control of aquatic products. |
---|