Cargando…

Enantiocontrolled Preparation of ϒ-Substituted Cyclohexenones: Synthesis and Kinase Activity Assays of Cyclopropyl-Fused Cyclohexane Nucleosides

The enantioselective preparation of the two isomers of 4-hydroxy-2-cyclohexanone derivatives 1a,b was achieved, starting from a common cyclohexenone, through asymmetric transfer hydrogenation (ATH) reactions using bifunctional ruthenium catalysts. From these versatile intermediates, a stereoselectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Jurado, Sergio, Domínguez-Pérez, Beatriz, Illa, Ona, Balzarini, Jan, Busqué, Félix, Alibés, Ramon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456008/
https://www.ncbi.nlm.nih.gov/pubmed/36077100
http://dx.doi.org/10.3390/ijms23179704
Descripción
Sumario:The enantioselective preparation of the two isomers of 4-hydroxy-2-cyclohexanone derivatives 1a,b was achieved, starting from a common cyclohexenone, through asymmetric transfer hydrogenation (ATH) reactions using bifunctional ruthenium catalysts. From these versatile intermediates, a stereoselective route to a cytosine analogue built on a bicyclo [4.1.0]heptane scaffold is described. Nucleoside kinase activity assays with this cyclopropyl-fused cyclohexane nucleoside, together with other related nucleosides (2a–e), were performed, showing that thymine- and guanine- containing compounds have affinity for herpes simplex virus Type 1 (HSV-1) thymidine kinase (TK) but not for human cytosolic TK-1, thus pointing to their selectivity for herpetic TKs but not cellular TKs.