Cargando…

Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer

We propose an ambipolar chitosan synaptic transistor that effectively responds to binary neuroplasticity. We fabricated the synaptic transistors by applying a chitosan electric double layer (EDL) to the gate insulator of the excimer laser annealed polycrystalline silicon (poly-Si) thin-film transist...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Ki-Woong, Cho, Won-Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459674/
https://www.ncbi.nlm.nih.gov/pubmed/36080099
http://dx.doi.org/10.3390/nano12173063
_version_ 1784786568026783744
author Park, Ki-Woong
Cho, Won-Ju
author_facet Park, Ki-Woong
Cho, Won-Ju
author_sort Park, Ki-Woong
collection PubMed
description We propose an ambipolar chitosan synaptic transistor that effectively responds to binary neuroplasticity. We fabricated the synaptic transistors by applying a chitosan electric double layer (EDL) to the gate insulator of the excimer laser annealed polycrystalline silicon (poly-Si) thin-film transistor (TFT) with Ni-silicide (NiSi) Schottky-barrier source/drain (S/D) junction. The undoped poly-Si channel and the NiSi S/D contact allowed conduction by electrons and holes, resulting in artificial synaptic behavior in both p-type and n-type regions. A slow polarization reaction by the mobile ions such as anions (CH(3)COO(−) and OH(−)) and cations (H(+)) in the chitosan EDL induced hysteresis window in the transfer characteristics of the ambipolar TFTs. We demonstrated the excitatory post-synaptic current modulations and stable conductance modulation through repetitive potentiation and depression pulse. We expect the proposed ambipolar chitosan synaptic transistor that responds effectively to both positive and negative stimulation signals to provide more complex information process versatility for bio-inspired neuromorphic computing systems.
format Online
Article
Text
id pubmed-9459674
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94596742022-09-10 Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer Park, Ki-Woong Cho, Won-Ju Nanomaterials (Basel) Article We propose an ambipolar chitosan synaptic transistor that effectively responds to binary neuroplasticity. We fabricated the synaptic transistors by applying a chitosan electric double layer (EDL) to the gate insulator of the excimer laser annealed polycrystalline silicon (poly-Si) thin-film transistor (TFT) with Ni-silicide (NiSi) Schottky-barrier source/drain (S/D) junction. The undoped poly-Si channel and the NiSi S/D contact allowed conduction by electrons and holes, resulting in artificial synaptic behavior in both p-type and n-type regions. A slow polarization reaction by the mobile ions such as anions (CH(3)COO(−) and OH(−)) and cations (H(+)) in the chitosan EDL induced hysteresis window in the transfer characteristics of the ambipolar TFTs. We demonstrated the excitatory post-synaptic current modulations and stable conductance modulation through repetitive potentiation and depression pulse. We expect the proposed ambipolar chitosan synaptic transistor that responds effectively to both positive and negative stimulation signals to provide more complex information process versatility for bio-inspired neuromorphic computing systems. MDPI 2022-09-03 /pmc/articles/PMC9459674/ /pubmed/36080099 http://dx.doi.org/10.3390/nano12173063 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Park, Ki-Woong
Cho, Won-Ju
Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer
title Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer
title_full Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer
title_fullStr Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer
title_full_unstemmed Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer
title_short Binary-Synaptic Plasticity in Ambipolar Ni-Silicide Schottky Barrier Poly-Si Thin Film Transistors Using Chitosan Electric Double Layer
title_sort binary-synaptic plasticity in ambipolar ni-silicide schottky barrier poly-si thin film transistors using chitosan electric double layer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459674/
https://www.ncbi.nlm.nih.gov/pubmed/36080099
http://dx.doi.org/10.3390/nano12173063
work_keys_str_mv AT parkkiwoong binarysynapticplasticityinambipolarnisilicideschottkybarrierpolysithinfilmtransistorsusingchitosanelectricdoublelayer
AT chowonju binarysynapticplasticityinambipolarnisilicideschottkybarrierpolysithinfilmtransistorsusingchitosanelectricdoublelayer