Cargando…
Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning
In an attempt to overcome the limitations of reward-driven representation learning in vision-based reinforcement learning (RL), an unsupervised learning framework referred to as the visual pretraining via contrastive predictive model (VPCPM) is proposed to learn the representations detached from the...
Autores principales: | Luu, Tung M., Vu, Thang, Nguyen, Thanh, Yoo, Chang D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460564/ https://www.ncbi.nlm.nih.gov/pubmed/36080961 http://dx.doi.org/10.3390/s22176504 |
Ejemplares similares
-
C2RL: Convolutional-Contrastive Learning for Reinforcement Learning Based on Self-Pretraining for Strong Augmentation
por: Park, Sanghoon, et al.
Publicado: (2023) -
Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models
por: Alam, Minhaj Nur, et al.
Publicado: (2023) -
Visual-Text Reference Pretraining Model for Image Captioning
por: Li, Pengfei, et al.
Publicado: (2022) -
Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining
por: Wen, Mingjian, et al.
Publicado: (2022) -
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022)