Cargando…

Targeting gliovascular connexins prevents inflammatory blood-brain barrier leakage and astrogliosis

The blood-brain barrier is formed by capillary endothelial cells expressing connexin 37 (Cx37), Cx40, and Cx43 and is joined by closely apposed astrocytes expressing Cx43 and Cx30. We investigated whether connexin-targeting peptides could limit barrier leakage triggered by LPS-induced systemic infla...

Descripción completa

Detalles Bibliográficos
Autores principales: De Bock, Marijke, De Smet, Maarten, Verwaerde, Stijn, Tahiri, Hanane, Schumacher, Steffi, Van Haver, Valérie, Witschas, Katja, Steinhäuser, Christian, Rouach, Nathalie, Vandenbroucke, Roosmarijn E., Leybaert, Luc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462469/
https://www.ncbi.nlm.nih.gov/pubmed/35881483
http://dx.doi.org/10.1172/jci.insight.135263
Descripción
Sumario:The blood-brain barrier is formed by capillary endothelial cells expressing connexin 37 (Cx37), Cx40, and Cx43 and is joined by closely apposed astrocytes expressing Cx43 and Cx30. We investigated whether connexin-targeting peptides could limit barrier leakage triggered by LPS-induced systemic inflammation in mice. Intraperitoneal LPS administration increased endothelial and astrocytic Cx43 expression; elevated TNF-α, IL-1β, IFN-γ, and IL-6 in plasma and IL-6 in the brain; and induced barrier leakage recorded over 24 hours. Barrier leakage was largely prevented by global Cx43 knockdown and Cx43/Cx30 double knockout in astrocytes, slightly diminished by endothelial Cx43 knockout, and not protected by global Cx30 knockout. Intravenous administration of Gap27 or Tat-Gap19 peptides just before LPS also prevented barrier leakage, and intravenously administered BAPTA-AM to chelate intracellular calcium was equally effective. Patch-clamp experiments demonstrated LPS-induced Cx43 hemichannel opening in endothelial cells, which was suppressed by Gap27, Gap19, and BAPTA. LPS additionally triggered astrogliosis that was prevented by intravenous Tat-Gap19 or BAPTA-AM. Cortically applied Tat-Gap19 or BAPTA-AM to primarily target astrocytes also strongly diminished barrier leakage. In vivo dye uptake and in vitro patch-clamp showed Cx43 hemichannel opening in astrocytes that was induced by IL-6 in a calcium-dependent manner. We conclude that targeting endothelial and astrocytic connexins is a powerful approach to limit barrier failure and astrogliosis.