Cargando…

Tumor purity adjusted beta values improve biological interpretability of high-dimensional DNA methylation data

A common issue affecting DNA methylation analysis in tumor tissue is the presence of a substantial amount of non-tumor methylation signal derived from the surrounding microenvironment. Although approaches for quantifying and correcting for the infiltration component have been proposed previously, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Staaf, Johan, Aine, Mattias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462735/
https://www.ncbi.nlm.nih.gov/pubmed/36084090
http://dx.doi.org/10.1371/journal.pone.0265557
Descripción
Sumario:A common issue affecting DNA methylation analysis in tumor tissue is the presence of a substantial amount of non-tumor methylation signal derived from the surrounding microenvironment. Although approaches for quantifying and correcting for the infiltration component have been proposed previously, we believe these have not fully addressed the issue in a comprehensive and universally applicable way. We present a multi-population framework for adjusting DNA methylation beta values on the Illumina 450/850K platform using generic purity estimates to account for non-tumor signal. Our approach also provides an indirect estimate of the aggregate methylation state of the surrounding normal tissue. Using whole exome sequencing derived purity estimates and Illumina 450K methylation array data generated by The Cancer Genome Atlas project (TCGA), we provide a demonstration of this framework in breast cancer illustrating the effect of beta correction on the aggregate methylation beta value distribution, clustering accuracy, and global methylation profiles.