Cargando…

Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms

Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na(+) to H(+) selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous r...

Descripción completa

Detalles Bibliográficos
Autores principales: Young, Victoria C., Nakanishi, Hanayo, Meyer, Dylan J., Nishizawa, Tomohiro, Oshima, Atsunori, Artigas, Pablo, Abe, Kazuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463140/
https://www.ncbi.nlm.nih.gov/pubmed/36085139
http://dx.doi.org/10.1038/s41467-022-32793-0
Descripción
Sumario:Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na(+) to H(+) selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H(+)/K(+) pump, a strict H(+)-dependent electroneutral P-type ATPase, into a bona fide Na(+)-dependent electrogenic Na(+)/K(+) pump. Conversion of a H(+)-dependent primary-active transporter into a Na(+)-dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H(+)/K(+) pump, a suitable drug target to treat cystic fibrosis, and of its Na(+)/K(+) pump-mimicking mutant in two major conformations, providing insight on how Na(+) binding drives a concerted mechanism leading to Na(+)/K(+) pump phosphorylation.