Cargando…
Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms
Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na(+) to H(+) selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous r...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463140/ https://www.ncbi.nlm.nih.gov/pubmed/36085139 http://dx.doi.org/10.1038/s41467-022-32793-0 |
_version_ | 1784787333234556928 |
---|---|
author | Young, Victoria C. Nakanishi, Hanayo Meyer, Dylan J. Nishizawa, Tomohiro Oshima, Atsunori Artigas, Pablo Abe, Kazuhiro |
author_facet | Young, Victoria C. Nakanishi, Hanayo Meyer, Dylan J. Nishizawa, Tomohiro Oshima, Atsunori Artigas, Pablo Abe, Kazuhiro |
author_sort | Young, Victoria C. |
collection | PubMed |
description | Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na(+) to H(+) selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H(+)/K(+) pump, a strict H(+)-dependent electroneutral P-type ATPase, into a bona fide Na(+)-dependent electrogenic Na(+)/K(+) pump. Conversion of a H(+)-dependent primary-active transporter into a Na(+)-dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H(+)/K(+) pump, a suitable drug target to treat cystic fibrosis, and of its Na(+)/K(+) pump-mimicking mutant in two major conformations, providing insight on how Na(+) binding drives a concerted mechanism leading to Na(+)/K(+) pump phosphorylation. |
format | Online Article Text |
id | pubmed-9463140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94631402022-09-11 Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms Young, Victoria C. Nakanishi, Hanayo Meyer, Dylan J. Nishizawa, Tomohiro Oshima, Atsunori Artigas, Pablo Abe, Kazuhiro Nat Commun Article Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na(+) to H(+) selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H(+)/K(+) pump, a strict H(+)-dependent electroneutral P-type ATPase, into a bona fide Na(+)-dependent electrogenic Na(+)/K(+) pump. Conversion of a H(+)-dependent primary-active transporter into a Na(+)-dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H(+)/K(+) pump, a suitable drug target to treat cystic fibrosis, and of its Na(+)/K(+) pump-mimicking mutant in two major conformations, providing insight on how Na(+) binding drives a concerted mechanism leading to Na(+)/K(+) pump phosphorylation. Nature Publishing Group UK 2022-09-09 /pmc/articles/PMC9463140/ /pubmed/36085139 http://dx.doi.org/10.1038/s41467-022-32793-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Young, Victoria C. Nakanishi, Hanayo Meyer, Dylan J. Nishizawa, Tomohiro Oshima, Atsunori Artigas, Pablo Abe, Kazuhiro Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms |
title | Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms |
title_full | Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms |
title_fullStr | Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms |
title_full_unstemmed | Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms |
title_short | Structure and function of H(+)/K(+) pump mutants reveal Na(+)/K(+) pump mechanisms |
title_sort | structure and function of h(+)/k(+) pump mutants reveal na(+)/k(+) pump mechanisms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463140/ https://www.ncbi.nlm.nih.gov/pubmed/36085139 http://dx.doi.org/10.1038/s41467-022-32793-0 |
work_keys_str_mv | AT youngvictoriac structureandfunctionofhkpumpmutantsrevealnakpumpmechanisms AT nakanishihanayo structureandfunctionofhkpumpmutantsrevealnakpumpmechanisms AT meyerdylanj structureandfunctionofhkpumpmutantsrevealnakpumpmechanisms AT nishizawatomohiro structureandfunctionofhkpumpmutantsrevealnakpumpmechanisms AT oshimaatsunori structureandfunctionofhkpumpmutantsrevealnakpumpmechanisms AT artigaspablo structureandfunctionofhkpumpmutantsrevealnakpumpmechanisms AT abekazuhiro structureandfunctionofhkpumpmutantsrevealnakpumpmechanisms |